

E • Best Rational Approximation

Many microcontrollers have no floating point unit but do have a (reasonably) fast integer divide unit. In these cases it may pay to use rational values to approximate floating point constants. For instance,

355/113 = 3.1415929203539823008849557522124

is a quite good approximation to

 $\pi = 3.14159265358979323846$

A best rational approximation, p/q, to a real number, x, with denominator at most M is a rational number, p/q (in lowest terms), with $q \ll M$ such that, for any integers, a and b with $b \ll M$, and a and b relatively prime, p/q is at least as close to x as a/b:

$$|\mathbf{x} - \mathbf{p}/\mathbf{q}| \le |\mathbf{x} - \mathbf{a}/\mathbf{b}|$$

Write a program to compute the best rational approximation to a real number, \boldsymbol{x} , with denominator at most \boldsymbol{M} .

Input

The first line of input contains a single integer P, $(1 \le P \le 1000)$, which is the number of data sets that follow. Each data set should be processed identically and independently.

Each data set consists of a single line of input. It contains the data set number, *K*, followed by the maximum denominator value, M ($15 \le M \le 100000$), followed by a floating-point value, *x*, ($0 \le x < 1$).

Output

For each data set there is a single line of output. The single output line consists of the data set number, K, followed by a single space followed by the numerator, p, of the best rational approximation to x, followed by a forward slash (/) followed by the denominator, q, of the best rational approximation to x.

Sample Input	Sample Output
3	1 14093/99532
1 100000 .141592653589793238	2 16/113
2 255 .141592653589793238	3 1/7
3 15 .141592653589793238	