acm
icpc north
america
sponsor

2017 ACM ICPC Greater New York Regional Contest

E•Best Rational Approximation

Many microcontrollers have no floating point unit but do have a (reasonably) fast integer divide unit. In these cases it may pay to use rational values to approximate floating point constants. For instance,

$$
355 / 113=3.1415929203539823008849557522124
$$

is a quite good approximation to

$$
\pi=3.14159265358979323846
$$

A best rational approximation, $\boldsymbol{p} / \boldsymbol{q}$, to a real number, \boldsymbol{x}, with denominator at most \boldsymbol{M} is a rational number, $\boldsymbol{p} / \boldsymbol{q}$ (in lowest terms), with $\boldsymbol{q}<=\boldsymbol{M}$ such that, for any integers, \boldsymbol{a} and \boldsymbol{b} with $\boldsymbol{b}<=\boldsymbol{M}$, and \boldsymbol{a} and \boldsymbol{b} relatively prime, $\boldsymbol{p} / \boldsymbol{q}$ is at least as close to \boldsymbol{x} as $\boldsymbol{a} / \boldsymbol{b}$:

$$
|x-p / q| \leq|x-a / b|
$$

Write a program to compute the best rational approximation to a real number, \boldsymbol{x}, with denominator at most M.

Input

The first line of input contains a single integer $\boldsymbol{P},(\mathbf{1} \leq \boldsymbol{P} \leq \mathbf{1 0 0 0})$, which is the number of data sets that follow. Each data set should be processed identically and independently.

Each data set consists of a single line of input. It contains the data set number, \boldsymbol{K}, followed by the maximum denominator value, $\boldsymbol{M}(\mathbf{1 5} \leq M \leq \mathbf{1 0 0 0 0 0})$, followed by a floating-point value, $\boldsymbol{x},(\mathbf{0} \leq \mathrm{x}<\mathbf{1})$.

Output

For each data set there is a single line of output. The single output line consists of the data set number, \boldsymbol{K}, followed by a single space followed by the numerator, \boldsymbol{p}, of the best rational approximation to \boldsymbol{x}, followed by a forward slash (/) followed by the denominator, \boldsymbol{q}, of the best rational approximation to \boldsymbol{x}.

Sample Input	Sample Output
3	$114093 / 99532$
1	100000.141592653589793238
2	255.14159265359793238
3	15.141592653589793238

