
Problem C: Slink

Source file: slink.{c, cpp, java}

Input file: slink.in

Slitherlink is a puzzle published by Nikoli, the Japanese company that popularized Sudoku. Slitherlink puzzles are gaining

momentum, and books of Slitherlink puzzles have started showing up around the world. The puzzles are simple to

understand, but can be challenging to solve. The puzzle is simply a rectangular grid of dots that forms a collection of cells,

every cell being either blank or containing an integer from zero to three. The challenge is to connect the dots with line

segments to form a cycle (a connected path such that every vertex has precisely two incident edges), in such a way that

every cell with a value has exactly the number of incident edges as the digit it contains. Cells with no value may have any

number of incident edges. A valid Slitherlink puzzle always contains sufficient non-empty cells to guarantee a unique

solution. Below is an example from the Nikoli web site of a Slitherlink puzzle and its solution.

It was shown by Takayuki Yato at the University of Tokyo that the general Slitherlink problem is NP-complete. (If you are

not familiar with this concept, informally it means there is no "efficient" algorithm to solve the problem.) With a slight

modification and some simple heuristics, however, programmatic solutions are possible. Our new puzzle, which we will

term Slink, differs from Slitherlink only in that the puzzle may not have empty cells. That is, every cell must specify the

number of incident edges. Below is the Slitherlink puzzle above converted to Slink (the added numbers are shown in gray).

Note that the solution does not change, only the information given in the puzzle itself.

The heuristics for solving Slink arise from the nature of the puzzle itself. For example, consider a cell containing a zero.

There must be no incident edges, therefore all edges incident to all zeros can be immediately removed from consideration as



part of the solution path. Consider a three next to a zero. Because all the edges incident to the zero will be eliminated, the

common edge shared with the three is also eliminated. But that leaves only three edges around the three, and therefore those

three edges must be part of the solution path. The following table specifies the heuristic rules that must be properly applied

to solve a Slink puzzle. The "x" characters between vertices mark edges that are not part of the solution path, while line

segments between vertices mark edges that form part of the solution. Grey elements are the pattern the rule is based on,

black elements indicate the additional edges that should be included or excluded if the rule is matched. Note that the

pictured examples are for demonstration purposes only and do not illustrate every possible arrangement of the stated rule!

Examples Rule Specification  Examples Rule Specification

The easiest and most obvious 

of all the rules. Cells 

containing a zero have no

incident edges, so all the edges 

around a zero should be

removed from consideration as 

part of the solution path.

 

If a cell contains the value n

and only n incident edges

remain (i.e. have not been 

eliminated), then the n

remaining edges must be part 

of the solution path. Two 

examples of this occurring are

shown here.

If a cell contains the value n

and n incident edges have

already been included in the 

path, the remaining edges can 

be eliminated. Two examples

of this occurring are shown 

here.

 

If two 3's are adjacent to one 

another, the common edge 

between the cells as well as the

outer edges of both cells are 

part of the solution path. One

example of this arrangement 

occuring is shown here.

If two 3's occur diagonally 

adjacent, the opposing corners 

as shown here must be part of

the solution path. One example 

of such an arrangement is

shown here.

 

If an edge enters a vertex for 

which only a single exit 

remains, that exit must be part

of the solution path. One such 

example is shown here.

If a vertex has two incident 

edges, the other edges can be

eliminated from consideration 

as part of the solution path. 

One such example is shown

here.

 

If any vertex has three incident 

edges excluded, the fourth

incident edge can be excluded 

as well. One possible 

arrangement of this occurring is

shown here.

A 3 for which two of the exits 

are blocked as shown, such as 

in a corner of the puzzle, must

include the two edges incident 

to the blocked vertex.

 

If the exits at one corner of a 2 

are blocked, and one exit at an

adjacent vertex around the 2 is 

also blocked, then the 

unblocked exit at that adjacent

vertex must be part of the 

solution path. One example of

this arrangement is shown here.



A 1 for which the exit paths at 

one of its incident vertices are

both blocked as shown, such as 

might occur in the corner of 

the puzzle, must also eliminate

the other two edges incident to 

that vertex as shown.

 

If the solution path enters the 

corner of a 3, and the exit that

goes away from the 3 at that 

same corner is blocked, then 

the two edges around the three

incident to the opposite corner 

must be part of the solution

path.

If a 3 and 1 are diagonally 

adjacent, and the corner of the 

3 furthest from the 1 has the

exit segments blocked as 

shown, then the edges incident

to the far corner of the 1 

becomes blocked. The opposite

is also true; if the far corner of 

the 1 had been blocked, then

the exit segments at the far 

corner of the 3 would become 

blocked in the same manner.

 

If the solution path enters the 

corner of 2 and the path leading

away from the 2 at the same 

corner is blocked, then if one of 

the paths leading away from

the 2 at the diagonally opposite 

corner is also blocked, the other

edge leading away from the 2 

at that same corner must be part

of the solution path. One 

example of this arrangement

occurring is shown here.

If the solution path enters the 

corner of a 1, and the exit that

goes away from the 1 at that 

same corner is blocked, then 

the two edges around the three

incident to the opposite corner 

must be eliminated from the

solution path.

   

Input: The input for this problem is a set of Slink puzzles to be solved. The first line of a Slink problem's input contains two

integers, r and c, separated by a space, the number of rows and the number of columns in the puzzle. The next r rows of the

input contain c integers, space delimited, valued from 0 to 3, which specify the content of the puzzle. The minimum

dimension of a puzzle is 2 by 2 cells, and the maximum dimension is 20 by 20 cells. It is guaranteed that a unique solution

to every input puzzle exists and can be determined with the above rules if a rule is always applied when it can be applied. A

line with values of zero for r and c marks the end of the input.

Output: The output for this problem is a graphical representation of the Slink puzzle solution. The first data set is 1, the

second data set is 2, etc. On a line by itself display the data set number, followed by the solution in exactly the format

demonstrated below. Vertical edges are output as the vertical bar '|' character, horizontal edges are output as dash '-'

characters, vertices where the path changes direction are output as plus signs '+', and cell numbers are always displayed with

a blank to the left and to the right. Further, surround the entire output with a border made up of hash marks '#' such that the

number in the upper left cell of the puzzle always occurs four positions to the right of the border and three position below

the border, and the number in the lower right cell always occurs four positions to the left of the border and three positions

above the border.



Example Input: Example Output:

8 8

1 0 1 1 2 2 1 3

3 3 3 3 2 3 3 2

2 2 0 1 1 2 2 0

2 3 1 1 0 1 2 2

2 1 2 3 1 1 0 2

1 2 2 2 2 3 2 1

3 2 1 3 1 1 3 2

1 0 0 2 3 2 3 2

6 6

0 0 1 1 0 0

0 2 2 2 2 0

1 2 0 0 2 1

1 2 0 0 2 1

0 2 2 2 2 0

0 0 1 1 0 0

2 2

2 2

2 2

3 5

3 3 3 2 3

1 2 1 3 2

3 3 2 2 2

0 0

1

#####################################

#                                   #

#                 +---------------+ #

#   1   0   1   1 | 2   2   1   3 | #

# +---+   +---+   |   +---+   +---+ #

# | 3 | 3 | 3 | 3 | 2 | 3 | 3 | 2   #

# |   +---+   +---+   |   +---+     #

# | 2   2   0   1   1 | 2   2   0   #

# +-------+           +-------+     #

#   2   3 | 1   1   0   1   2 | 2   #

# +-------+   +---+           +---+ #

# | 2   1   2 | 3 | 1   1   0   2 | #

# |       +---+   |   +---+       | #

# | 1   2 | 2   2 | 2 | 3 | 2   1 | #

# |   +---+   +---+   |   +---+   | #

# | 3 | 2   1 | 3   1 | 1   3 | 2 | #

# +---+       +---+   |   +---+   | #

#   1   0   0   2 | 3 | 2 | 3   2 | #

#                 +---+   +-------+ #

#                                   #

#####################################

2

#############################

#                           #

#                           #

#   0   0   1   1   0   0   #

#         +-------+         #

#   0   2 | 2   2 | 2   0   #

#     +---+       +---+     #

#   1 | 2   0   0   2 | 1   #

#     |               |     #

#   1 | 2   0   0   2 | 1   #

#     +---+       +---+     #

#   0   2 | 2   2 | 2   0   #

#         +-------+         #

#   0   0   1   1   0   0   #

#                           #

#                           #

#############################

3

#############

#           #

# +-------+ #

# | 2   2 | #

# |       | #

# | 2   2 | #

# +-------+ #

#           #

#############

4

#########################

#                       #

# +---+   +---+   +---+ #

# | 3 | 3 | 3 | 2 | 3 | #

# |   +---+   |   |   | #

# | 1   2   1 | 3 | 2 | #

# |   +---+   +---+   | #

# | 3 | 3 | 2   2   2 | #

# +---+   +-----------+ #

#                       #

#########################


