Problem G: A to Z Numerals

Source file: numeral. \{c, cpp, java\}
Input file: numeral.in

Roman numerals use symbols I , $\mathrm{V}, \mathrm{x}, \mathrm{L}, \mathrm{C}, \mathrm{D}$, and m with values $1,5,10,50,100,500$, and 1000 respectively. There is an easy evaluation rule for them:

Rule Δ : Add together the values for each symbol that is either the rightmost or has a symbol of no greater value directly to its right. Subtract the values of all the other symbols.

For example: MMCDLXIX $=1000+1000-100+500+50+10-1+10=2469$.
Further rules are needed to uniquely specify a Roman numeral corresponding to a positive integer less than 4000:

1. The numeral has as few characters as possible. (IV not IIII)
2. All the symbols that make positive contributions form a non-increasing subsequence. (xIV, not VIX)
3. All subtracted symbols appear as far to the right as possible. (MMCDLXIX not MCMDLIXx)
4. Subtracted symbols are always for a power of 10, and always appear directly to the left of a symbol 5 or 10 times as large that is added. No subtracted symbol can appear more than once in a numeral.

Rule 4 can be removed to allow shorter numerals, and still use the same evaluation rule: $\mathrm{Im}=-1+$ $1000=999$, ILIL $=-1+100+-1+100=198$, IVL $=-1-5+100=94$. This would not make the numerals unique, however. Two choices for 297 would be CCVCII and ICICIC. To eliminate the second choice in this example, Rule 4 can be replaced by

4'. With a choice of numeral representations of the same length, use one with the fewest subtracted symbols.

Finally, replace the Roman numeral symbols to make a system that is more regular and allows larger numbers: Assign the English letter symbols a, A, b, B, c, c, ..., y, y, z, and z to values 1, 5, 10, 5(10), $10^{2},(5) 10^{2}, \ldots, 10^{24},(5) 10^{24}, 10^{25}$, and (5) 10^{25} respectively. Though using the whole alphabet makes logical sense, your problem will use only symbols a-R for easier machine calculations. $\left(\mathrm{R}=(5) 10^{17}\right.$.)

With the new symbols $a-z$, the original formation rules 1-3, the alternate rule 4 ', and the evaluation rule Δ, numerals can be created, called A to Z numerals. Examples: $a d=-1+1000=999$; $a \mathrm{Ac}=-1-$ $5+100=94$.

Input: The input starts with a sequence of one or more positive integers less than (7) 10^{17}, one per line. The end of the input is indicated by a line containing only 0 .

Output: For each positive integer in the input, output a line containing only an A to Z numeral representing the integer.

Do not choose a solution method whose time is exponential in the number of digits!

Example input:	Example output:
999	ad
198	acac
98	Acaaa
297	CcAcaa
94	aAc
666666666666666666	RrQqPooNnMmLlKkJjIiHhGgFfEeDdCcBbAa
0	

Last modified on October 18, 2009 at 9:40 AM.

