Problem B: Mad Scientist

Source file: mad. $\{\mathrm{c}, \mathrm{cpp}$, java\}
Input file: mad.in

A mad scientist performed a series of experiments, each having n phases. During each phase, a measurement was taken, resulting in a positive integer of magnitude at most k. The scientist knew that an individual experiment was designed in a way such that its measurements were monotonically increasing, that is, each measurement would be at least as big as all that precede it. For example, here is a sequence of measurements for one such experiment with $n=13$ and $k=6$:

$$
1,1,2,2,2,2,2,4,5,5,5,5,6
$$

It was also the case that n was to be larger than k, and so there were typically many repeated values in the measurement sequence. Being mad, the scientist chose a somewhat unusual way to record the data. Rather than record each of n measurements, the scientist recorded a sequence P of k values defined as follows. For $l \leq j \leq k, P(j)$ denoted the number of phases having a measurement of j or less. For example, the original measurements from the above experiment were recorded as the P-sequence:

$$
2,7,7,8,12,13
$$

as there were two measurements less than or equal to 1 , seven measurements less than or equal to 2 , seven measurement less than or equal to 3 , and so on.

Unfortunately, the scientist eventually went insane, leaving behind a notebook of these P-sequences for a series of experiments. Your job is to write a program that recovers the original measurements for the experiments.

Input: The input contains a series of P-sequences, one per line. Each line starts with the integer k, which is the length of the P-sequence. Following that are the k values of the P-sequence. The end of the input will be designated with a line containing the number 0 . All of the original experiments were designed with $l \leq k<n \leq 26$.

Output: For each P-sequence, you are to output one line containing the original experiment measurements separated by spaces.

