Problem B: Digit Solitaire

Source file: digits. $\{\mathrm{c}, \mathrm{cpp}$, java $\}$
Input file: digits.in
Despite the glorious fall colors in the midwest, there is a great deal of time to spend while on a train from St. Louis to Chicago. On a recent trip, we passed some time with the following game.

We start with a positive integer S. So long as it has more than one digit, we compute the product of its digits and repeat. For example, if starting with 95 , we compute $9 \times 5=45$. Since 45 has more than one digit, we compute $4 \times 5=20$. Continuing with 20 , we compute $2 \times 0=0$. Having reached 0 , which is a single-digit number, the game is over.

As a second example, if we begin with 396 , we get the following computations:
$3 \times 9 \times 6=162$
$1 \times 6 \times 2=12$
$1 \times 2=2$
and we stop the game having reached 2 .
Input: Each line contains a single integer $l \leq S \leq 100000$, designating the starting value. The value S will not have any leading zeros. A value of 0 designates the end of the input.

Output: For each nonzero input value, a single line of output should express the ordered sequence of values that are considered during the game, starting with the original value.

Example input:	Example output:
95	95 45 20 0 396 162 12 2 396 28 16 6 28 4 4 40 0 40 0

