## Problem K <br> Kleptography

John likes simple ciphers. He had been using the "Caesar" cipher to encrypt his diary until recently, when he learned a hard lesson about its strength by catching his sister Mary browsing through the diary without any problems.

Rapidly searching for an alternative, John found a solution: the famous "Autokey" cipher. He uses a version that takes the 26 lower-case letters 'a'-'z' and internally translates them in alphabetical order to the numbers 0 to 25 .

The encryption key $k$ begins with a secret prefix of $n$ letters. Each of the remaining letters of the key is copied from the letters of the plaintext $a$, so that $k_{n+i}=a_{i}$ for $i \geq 1$. Encryption of the plaintext $a$ to the ciphertext $b$ follows the formula $b_{i}=a_{i}+k_{i} \bmod 26$.
Mary is not easily discouraged. She was able to get a peek at the last $n$ letters John typed into his diary on the family computer before he noticed her, quickly encrypted the text document with a click, and left. This could be her chance.

## Input

The input consists of:

- One line with two integers $n$ and $m(1 \leq n \leq 30, n+1 \leq m \leq 100)$, where $n$ is the length of the keyword as well as the number of letters Mary saw, and $m$ is the length of the text.
- One line with $n$ lower-case letters, the last $n$ letters of the plaintext.
- One line with $m$ lower-case letters, the whole ciphertext.


## Output

Output the plaintext of John's diary.

## Sample Input 1

## Sample Output 1

```
516
again
pirpumsemoystoal
```

```
marywasnosyagain
```

```
marywasnosyagain
```

Sample Input 2
Sample Output 2

```
112
d
```

fzvfkdocukfu

