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PROBLEM A
The Quadratic formula (Mod p)

The Quadratic Equation was a topic that preoccupied you for some time in Algebra. In this problem you'll be revisiting this topic. You are to find the roots of a quadratic equation:

a x2 + b x + c ( 0 (Mod p)

with a little twist. The coefficients a, b and c as well as x are positive integers in the range 1...p where p is an odd prime number (that is included as part of the input). All operations are done (Mod p). For instance, consider the equation 3 x2 + 1000 x + 65709 ( 0 (Mod p) and p = 337639. (You may trust us, 337639 is a prime number). You may verify x = 2345 is one root of this quadratic (Mod p). 

One way to solve a modular quadratic is to use the good old Quadratic formula. The only caveat is how to perform the operations needed in the quadratic formula (efficiently!). For example, we need:

 the "power" (Mod p) operation, 

                                    
 the "square root" (Mod p) operation, and finally 

                                    
 the "division" (Mod p)operation. 

Modular Power Operation
Modular power is defined by the equation: (a)b (Mod p)  You take the exponent of the number a and calculate the result (Mod p):

Examples of Modular Power Operation:

CASE: p = 7:

(5)4 ( 625 ( 2 (Mod p)
CASE: p = 13:

(5)4 ( 625 ( 1 (Mod p)
Modular Square Root Operation
A number n has two square roots (Mod p), if and only if the following condition holds:

CONDITION
IMPLIES THAT

n^((p-1)/2) == 1 (Mod p)
n has two square roots (Mod p)

n^((p-1)/2) != 1 (Mod p)
n has no square root Mod p

If n has two "square roots" (Mod p), then there exists two integers r1, r2 such that:

 n ( r1^2 (Mod p) and n ( r2^2 (Mod p) The main trick is finding the integers r1, r2. While we won't show you how to calculate a "square root" (Mod p), (that's your job!) we will show you how these square roots work:

Examples of Modular Square Root Operation:

CASE: p = 7:

Given below are the two "square roots" of 4 (Mod p)
r1 = Sqrt(4) ( 2 (Mod p)
r2 = Sqrt(4) ( 5 (Mod p)

Make sure these are indeed the "square roots" of 4 (Mod p)
Check r1: (r1)^2 ( 2 * 2 (Mod p) (  4 (Mod p) ( 4 (Mod p)
Check r2: (r2)^2 ( 5 * 5 (Mod p) ( 25 (Mod p) ( 4 (Mod p)
CASE: p = 337639277:

Given below are the two "square roots" of 17 (Mod p)
r1 ( Sqrt(17) ( 113622037 (Mod p)
r2 ( Sqrt(17) ( 224017240 (Mod p)

Make sure these are indeed the "square roots" of 4 (Mod p)
Check r1: (r1)^2 ( 12909967292029369 ( 17 (Mod p)
Check r2: (r2)^2 ( 50183723817217600 ( 17 (Mod p)

Modular Division Operation
In order to do modular division, you need to understand the modular multiplicative inverse operation. Assume that z is the multiplicative inverse of a number b then the following should hold:


z b ( 1 (Mod p)

this implies that


z ( (b)-1 (Mod p)

thus, (b)-1 is the multiplicative inverse of b. To divide any number a by b (Mod p)  simply multiply a by the multiplicative inverse of b 
Examples of Modular Division:

CASE: p = 7: 

Calculate 5/4 ( 5*(4)-1 (Mod p)
First, find the inverse of 4 (Mod p): (4)-1 ( 2 (Mod p)
Second, calculate 5*(4)-1 ( 5 * 2 ( 10 ( 3 (Mod p)
Check: (5/4) * 4 ( 3 * 4 ( 12 ( 5 (Mod p)
CASE: p = 13:

Calculate 5/4 ( 5*(4)-1 (Mod p)
First, find the inverse of 4 (Mod p): (4)-1 ( 10 (Mod p)
Second, calculate 5*(4)-1 ( 5 * 10 ( 50 ( 11 (Mod p)
Check: (5/4) * 4 ( 11 * 4 ( 44 ( 5 (Mod p)

The Program
!!!NOTE!!!: Calculations may require integers up to a maximum of 64 bits in length. 

Your task is to write a program that reads quadratic equations from a text file (a.dat), and determines whether or not each of the equations in the input has roots (Mod p). Each quadratic equation is on a separate line. The coefficients a, b, c of each quadratic equation and a modulus p are given on each line.  You may safely assume that all the non-negative values of p are odd prime numbers, however, if you encounter a negative p value, you should output the message "invalid input" as shown below in the sample. Your program must be efficient, because the input file will contain a large number of equations to solve. For each equation, output the equation and the root(s) in the following format:

Q[x_] := Mod[ax^2 + bx + c, p ]

{ root(s) or message goes here }
...blank line...

Q[x_] := Mod[ax^2 + bx + c, p ]

{ root(s) or message goes here }
...blank line...

To see how this format corresponds to actual input look at the sample input and output given below.

Sample Input
4  3         3         -13

4  3         3         13

17 8         1         71

3  1000      65709     337639

1  179344794 146367396 179424691


Sample Output
Q[x_] := Mod[ 4x^2 + 3x + 3, -13 ]

{ invalid input }

Q[x_] := Mod[ 4x^2 + 3x + 3, 13 ]

{ 11 }

Q[x_] := Mod[ 17x^2 + 8x + 1, 71 ]

{ has no roots }

Q[x_] := Mod[ 3x^2 + 1000x + 65709, 337639 ]

{ 2345, 109868 }

Q[x_] := Mod[ 1x^2 + 179344794x + 146367396, 179424691 ]

{ 78021, 1876 }
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