Unsatisfying

O QO
e QRO

Usually a computer scientist tries to satisfy some constraints. This time you will try to make
some logical statements unsatisfiable.
You will be given a list of logical statements of the following form:

p1Vpa,
—p2 V ps,
Dp3 V Tpg.

Each of the p; is a proposition that can be either true or false. The disjunction operator V can
be interpreted as logical OR. The — symbol is negation, which negates the value of the subsequent
proposition from true to false, and vice versa.

To satisfy a list of logical statements, you must assign either true or false to each of the
propositions such that every disjunction in the list evaluates to true.

Your task is to add disjunctions to the list to make the list of statements unsatisfiable. But the
additional disjunctions you add cannot use the negation symbol!

All disjunctions (both those given and ones you add) must have exactly 2 terms.

1 Input

The first line of input contains two space-separated integers n and m (1 < n,m < 2,000), with n
representing the number of propositions and m representing the number of disjunctions.

Each of the next m lines contains two space-separated integers a; and b; (1 < |a;, |b;] < n),
which describes the two propositions of the ith disjunction in the given list. A positive value a;,
for example, represents the proposition p,,. On the other hand, if a; is negative, it represents the
negated proposition, namely —p,, |-

The second sample input corresponds to the following list of logical statements:

p1V p2,
—p1 V ps,
—p2 V ps,

D3V TPy,
—p2 V ps.

2 Output

Output, on a single line, a single integer representing the minimum number of additional disjunctions
necessary to make the list unsatisfiable. If it is not possible to make the list unsatisfiable, print -1
instead. Each disjunction you add must have two (not necessarily distinct) propositions, and you
may not use negated propositions.

In the second sample case, adding a disjunction ps V po makes the list unsatisfiable.

3 Sample Input and Output

=N
N =

