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A � A New Alphabet � First solved at 0:03:08

Problem

Translate a string from one alphabet to another.

Solution

Manually convert the translation table to code. E.g. a function that
takes a single character, and returns the translated character by

checking a sequence of if statements,
using one large switch statement, or
querying a map data structure.

Uppercase letters should be translated to the same character as their
lowercase counterparts. This can be handled by

creating a second translation table for uppercase letters, or
converting uppercase letters to lowercase letters by using a library
function, or by manipulating their underlying ASCII values.

Finally a single pass through the text, outputting the translated
characters.

Problem Authors: Kathleen Ericson and Joshua T. Guerin NAQ 2016 solutions
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J � Quick Estimates � First solved at 0:04:33

Problem

Given a large integer, output the number of digits required to represent it
(in base 10).

Solution

The given integers will not �t in 32- or 64-bit integer types.

Instead, treat the integers as strings.

The answer is simply the length of each string.

Easiest problem in the problem set.

Problem Author: Greg Hamerly NAQ 2016 solutions
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C � Big Truck � First solved at 0:09:18

Problem

Out of all shortest paths from vertex 1 to vertex n, �nd the path that
maximizes the sum of values of visited vertices.

Solution

Two solution approaches:

1 Dijkstra's with an appropriate order on vertices

2 Longest path in a directed acyclic graph

Problem Author: David Sturgill NAQ 2016 solutions
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C � Big Truck � First solved at 0:09:18

Approach 1: Dijkstra's

All edge weights are positive, so Dijkstra's algorithm will easily �nd
shortest paths. The graph is small enough that sparse or dense
Dijkstra will both work.

Whenever two paths reach vertex v , Dijkstra's prefers the one that has
the least cost.

For this problem, if two paths reach v with the same minimum cost,
then we break the tie with the path which has picked up the most
items thus far.

For each path, keep two pieces of information: path cost c and
number of items picked up i .

Order the priority queue with respect to the tuple (c ,−i).
Still standard Dijkstra; runs in O(V 2) or O(E logV ).
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C � Big Truck � First solved at 0:09:18

Approach 2: Longest Path in a DAG

We can simplify the original graph by turning it into a DAG containing
only edges on some shortest path from node 1 to n.

Edge (a, b) with weight d is in this DAG i�.

dist(1, a) + d + dist(b, n) = dist(1, n)

This yields a DAG, since if edge (a, b) is chosen, then b is strictly
closer to n than a. So, there can't be any cycles.

The problem reduces to �nding the longest path in this DAG, with
length de�ned by the number of items at each vertex. This can be
solved in linear time using dynamic programming.
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H � Nine Packs � First solved at 0:12:02

Problem

Buy the minimum number of packs of buns and hotdogs, so that there are
equally many hotdogs and buns.

Solution

Considering only hotdog packs h1, . . . , hi , let opth(i , k) denote the
minimum number of packs you need to buy to have exactly k hotdogs,
or +∞ if impossible.

Similarly, let optb(i , k) denote the corresponding value for the packs
of buns b1, . . . , bi .

If C = min
(∑H

i=1
hi ,
∑B

i=1
bi

)
, the answer is

min
1≤k≤C

optb(B, k) + opth(H, k)

Note that C ≤ 100 · 1 000 = 105.

Problem Author: David Sturgill NAQ 2016 solutions
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H � Nine Packs � First solved at 0:12:02

Solution

Computing opth(i , k) is an instance of the Knapsack problem (or a
variant thereof), and can be solved in a similar manner as follows.

Based on whether we buy the i-th pack of hotdogs (hi ) or not, we get
the following recurrence:

opth(i , k) = min(1+ opth(i − 1, k − hi ), opth(i − 1, k))

We also have the base cases:

opth(i , k) =

{
0 if k = 0
+∞ if i = 0 or k < 0

We have a similar recursion for optb(i , k).

Finally, opth(H, k) and optb(B, k) can be computed for all 1 ≤ k ≤ C

in O((B + H)C ) using dynamic programming (or memoization).
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G � Inverse Factorial � First solved at 0:14:40

Problem

Given n!, �nd n.

Solution

It is guaranteed that the number of digits of n! is at most 106. This
implies that n < 3 · 105 (found by experimentation).

A naive approach computing factorials will be too slow, due to the
overhead of big integer arithmetic.

Instead we can notice that, when n ≥ 10, each factorial can be
uniquely identi�ed by its length (i.e. number of digits).

The length of an integer x can be computed as blog10(x)c+ 1.

Problem Author: Marko Berezovsky NAQ 2016 solutions
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G � Inverse Factorial � First solved at 0:14:40

Solution

Let

Lk := log10 (k!) = log10

(
k∏

i=1

i

)
=

k∑
i=1

log10(i)

Then the length of k! is bLkc+ 1.

Using the fact that Lk+1 = Lk + log10(k + 1), we can successively
compute L1, L2, . . ., until we �nd the factorial with the required length.

Each step takes O(1) time, and the answer will be found in at most
3 · 105 steps.

Handle n < 10 as special cases. As 0! = 1! = 1, make sure you output
1 when the input is 1 (the output should be positive).
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K � Robotopia � First solved at 0:26:54

Problem

There are two types of robots, each with a speci�c number of arms and
legs. Given the total number of arms and legs, determine the number of
robots of each type.

Solution

We're looking for positive integers x , y such that

l1x + l2y = lt

a1x + a2y = at

This is a system of linear equations, but we want integer solutions.

The constraints are small enough that complete search works:

Loop through all values x = 1, 2, . . . while l1x < lt .
Solve for the other variable: y = (lt − l1x)/l2.
Check if x , y are positive integers that satisfy the system of equations.

Output `?' if zero or multiple solutions were found.

Problem Author: Xiaoyuan Suo NAQ 2016 solutions
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D � Brackets � First solved at 0:40:42

Problem

Given a sequence of opening and closing brackets, determine if it's possible
to invert at most one contiguous subsequence of the brackets, so that the
brackets are correctly nested in the resulting sequence.

Solution

Let s1, . . . , sn denote the sequence of brackets.

An alternative way to characterize a valid bracket sequence:

1 For each pre�x of the sequence, there are at least as many left brackets
as there are right brackets, and

2 there are equally many left and right brackets in the entire sequence.

Problem Author: Bowen Yu NAQ 2016 solutions
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D � Brackets � First solved at 0:40:42

Solution

Basic idea:

Step through the sequence from left to right, keeping track of the
number of left and right brackets.
At some point start inverting brackets. At some later point, stop
inverting brackets.
At each step, make sure there are at least as many left brackets as
there are right brackets (condition 1).
When at the end, make sure there are equally many left and right
brackets (condition 2).

How to decide when to start/stop inverting? Dynamic programming.

Problem Author: Bowen Yu NAQ 2016 solutions



D � Brackets � First solved at 0:40:42

Solution

Let dp(i , l , t) be true i�. it's possible to step through si , . . . , sn such
that conditions 1 and 2 are satis�ed, assuming that l is the number of
left brackets we've seen so far, and

t = Before if we have not started inverting brackets yet,
t = Invert if we are currently inverting brackets, and
t = After if we have stopped inverting brackets.

Note that i − 1− l is the number of right brackets we've seen so far.

Base case: dp(n + 1, l , t) = true i�. l = (n + 1)− 1− l

Problem Author: Bowen Yu NAQ 2016 solutions



D � Brackets � First solved at 0:40:42

Solution

Recurrence:

dp(i , l , t) =


false if l < i − 1− l

(t = Before ∧ dp(i , l , Invert))

∨ (t = Invert ∧ dp(i , l , After))

∨ dp(i + 1, l + L(i , t), t)

otherwise

where

L(i , t) =


1 if si = `(' and t 6= Invert

1 if si = `)' and t = Invert

0 otherwise

Answer is dp(1, 0, Before).

Can be computed in O(n2) using dynamic programming.
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B � Arcade � First solved at 1:03:55

Problem

Compute the expected payout from an arcade game.

Solution

This (zero-player) game is an example of a Markov chain.

For background, see Grinstead and Snell, Ch. 11 [1, 2].

Three solution approaches:
1 Compute expected values via system of equations
2 Compute absorption probabilities
3 Simulate Markov chain for �nite number of steps

Problem Author: Godmar Back NAQ 2016 solutions
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B � Arcade � First solved at 1:03:55

Approach 1: Directly Computing Expected Values

Let Ei denote the expected payout if the ball is currently at hole i , and
let ci denote the payout for dropping into hole i . Then

Ei = p4ci + p0Ea + p1Eb + p2Ec + p3Ed

where a, b, c, d are the neighbors of hole i .

If H = N(N + 1)/2 is the number of holes, this gives a system of H
linear equations in H variables, which can be solved using Gaussian
elimination in O(H3).

The input constraints imply that the system is consistent and has a
unique solution.

Can be derived without knowing Markov chain theory.

Problem Author: Godmar Back NAQ 2016 solutions



B � Arcade � First solved at 1:03:55

Approach 2: Computing Absorption Probabilities

Uses Markov chain theory directly.

Model each hole as a transient state, model falling into a hole as
absorbing state. Have H = N(N + 1)/2 transient and H absorbing
states.

Build H ×H transition matrix Q, use Gaussian elimination to compute
fundamental matrix N = (I−Q)−1.

Compute absorption probabilities B = NR where R is the H × H

diagonal matrix Ri ,j of being absorbed (falling into the hole) j when
hovering over hole i .

Compute expected value as dot product of �rst row of B with
expected payout. (Optimize to compute only �rst row of B.)

Problem Author: Godmar Back NAQ 2016 solutions



B � Arcade � First solved at 1:03:55

Approach 3: Simulation

Keep track of probability of being over hole i after k steps: vector of
pk,i elements.

For all i , compute pk+1,i from pk,i by simulating the next event of ball
bouncing from hole i to possible neighbors.

Compute contribution to expected payout based on probability of
falling into hole i at step k .

Stop when probability of not having been absorbed is small enough.

Caveat: if probabilities of falling into holes are very small, this could
take many iterations: exploit problem constraint that the probability of
not having been absorbed drops below threshold.

Mathematically equivalent to computing �rst row of
NR = (I−Q)−1R = (I+Q+Q2 +Q3 + · · · )R � but will time out
if done using dense matrix!
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L � Unusual Darts � First solved at 1:24:48

Problem

Find the order in which Alice's darts were thrown so that the probability
that Bob's three darts land within her heptagon is the probability given.

Solution

Loop through all permutations of the seven points.

(Optimize) Restrict w.l.o.g. to permutations that start with �1�.

For each permutation, check that it forms a simple polygon. If not,
discard it.

If simple, compute the area, K , and the probability p =
(
K
22

)3
If generating permutations in lex. order, print the �rst one that works.
Otherwise, select the lex'ly least one from among the 14 possible
orderings of that heptagon.

Problem Author: Robert Hochberg NAQ 2016 solutions
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L � Unusual Darts � First solved at 1:24:48

Looping through all Permutations

Start with the permutation

Iterate: given a permutation

Find the maximal-length decreasing su�x

Swap the prior term with the �rst subsequent
term that's greater

Reverse the su�x

And done

Terminate after 7! (or 6!) iterations

1 2 3 4 5 6 7

1 2 6 4 7 5 3

1 2 6 4 7 5 3

1 2 6 4 7 5 3

1 2 6 5 7 4 3

1 2 6 5 7 4 3

1 2 6 5 3 4 7

1 2 6 5 3 4 7
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L � Unusual Darts � First solved at 1:24:48

Checking to See if a Polygon is Simple

The path (ax , ay )→ (bx , by )→ (cx , cy )
is a left turn i�.
(bx − ax)(cy − ay )− (by − ay )(cx − ax) > 0.

We use this to write boolean left(P, Q, R)

AB crosses CD i�. left(A,B,C ) 6= left(A,B,D)
and left(C ,D,A) 6= left(C ,D,B)

To check for simplicity, test all 14 pairs of
non-adjacent edges.

(ax , ay )
A

(bx , by )

B
(cx , cy )

C

D

Problem Author: Robert Hochberg NAQ 2016 solutions



L � Unusual Darts � First solved at 1:24:48

Area and Probability (by example)

Write coordinates in order, in a
column, repeating the �rst

Take 2× 2 determinants

Sum the determinants

Area is half the abs. value, 1.82

Probability of each dart is 1.82/4

So total probability (1.82/4)3

(0.0, 0.4)
(0.4, 0.6)
(0.2, 1.8)
(1.0, 1.0)
(1.4, 1.8)
(1.8, 1.8)
(1.8, 0.2)
(0.0, 0.4)

Problem Author: Robert Hochberg NAQ 2016 solutions
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E � Dots and Boxes � First solved at 2:09:32

Problem

Given an N × N mesh of points with some adjacent points already joined
by line segments. What is the maximum number of additional adjacent
pairs of points we can join together without forming a unit square?

Solution

Consider the possible unit squares. Each of them can
be surrounded by at most 3 line segments, as 4
surrounding line segments form a unit square.

Each unit square starts out with a budget of 3 allowed
surrounding line segments, subtract the number of
existing line segments that surround it.

Adding a new line segment will reduce the budgets of
two adjacent unit squares by one.

A B

C D

1 1

3 2

1-1 1

3-1 2

0 1

2 2

Problem Author: Bjarki Ágúst Guðmundsson NAQ 2016 solutions
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existing line segments that surround it.

Adding a new line segment will reduce the budgets of
two adjacent unit squares by one.
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Solution

Adding a line segment can be seen as matching the corresponding
adjacent unit squares together.

Each unit square can be matched multiple times (given by its budget),
and we want the maximum matching.

This is a standard generalization of maximum matching in a graph.

Key observation: the graph is bipartite (think of the colors on a
chessboard).
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Solution

This type of generalized bipartite matching can be solved using
network �ow. Similar to the network �ow formulation of ordinary
bipartite matching, but with modi�ed capacities.

Note: Need to add 1 to answer, as the original problem is posed
slightly di�erently.

Time complexity is O(N4) if Ford-Fulkerson is used.

Problem Author: Bjarki Ágúst Guðmundsson NAQ 2016 solutions



I � Primonimo � First solved at 2:17:14

Problem

Find a sequence of moves that wins a game of Primonimo.

Solution

Subtracting 1 from each square allows us to think of the problem in
terms of modulo-p arithmetic.

Since addition is commutative in modulo-p arithmetic, we can see that
the order in which we select squares doesn't matter.

Let xi ,j denote the number of times square (i , j) is selected, and let
vi ,j denote the initial value of square (i , j). Then we want

vi ,j +

(
n∑

k=1

xk,j +
m∑

k=1

xi ,k − xi ,j

)
≡ p − 1 (mod p)
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Solution

Assume for a moment that xi ,j ∈ R and that we wanted (for some
K ∈ R)

vi ,j +

(
n∑

k=1

xk,j +
m∑

k=1

xi ,k − xi ,j

)
= K

Then we have a system of n ×m linear equations in n ×m variables,
which we could solve using Gaussian elimination.

It turns out that Gaussian elimination works over any �eld (which
includes modulo-p arithmetic), so we can use the same method to
solve our problem! Just perform all operations of the Gaussian
elimination modulo p.

Performing a division a/b modulo p is the same as multiplying a by
the modular multiplicative inverse of b modulo p, which can be
computed with the Euclidean algorithm.
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Solution

All xi ,j can be taken modulo p, which means that, if there is a solution,
it will not use more moves than allowed by the problem statement.

Some care has to be taken when there are multiple solutions, or no
solutions, as described by the Rouché-Capelli theorem [3]. For the
case of multiple solutions, it su�ces to set all free variables to zero.

Time complexity is O(n3 ×m3).
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Problem

Given a large integer P , count the number of pairs of integers a, b such
that a + b = P , 0 < a < b and a, b, P do not mutually share any digits.
Also output a few of these pairs.

Solution

Use dynamic programming over the digits of a and b, from left to
right, to count the number of solutions.

Using a recursive function with memoization (as opposed to an
iterative DP), simpli�es reconstruction of the pairs of integers we need
to output.

The solution proceeds in two steps:
1 Compute the number of solutions to the whole problem and relevant

subproblems.
2 To produce the pairs, repeat the recursion and use the memoization

table to avoid processing empty branches.
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Solution

Let's de�ne the subproblem of size k as the original problem restricted
to the k least signi�cant digits of P .

Let a′, b′, P ′ denote the numbers a, b, P restricted to the k least
signi�cant digits, including possible leading zeros in a and b.

A subproblem of size k also needs the following input:

LZa(k), indicating if there is a leading zero in a′ at position k,
Cy(k), the carry (0 or 1) at position k produced by a′ + b′,
Fa(k), the set of forbidden digits for a′, and
Fb(k), the set of forbidden digits for b′.

Note that Fb(k) is uniquely determined by the other parameters and
the digits in P .
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Solution

Let's label each recursion level by its corresponding value k .

The solution of a subproblem of size k can be constructed using the
solutions of the subproblems of size k − 1 as follows:

At the kth level of recursion, loop through all acceptable digits of a′

and b′ at position k and through all acceptable values of Cy(k) and
LZa(k).
Inside the loop construct the corresponding values of Fa(k − 1),
Fb(k − 1), Cy(k − 1) and LZa(k − 1) and recurse to the (k − 1)th
level providing these values as input to the recursive call.
Use the values returned from the (k − 1)th level and combine them
with the acceptable digits at the kth level to obtain the solution at the
kth level. Or, when computing the number of solutions, just sum up
the returned values.
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Solution

The complete solution of the original problem is composed of the
solutions of two subproblems with parameters:

k = length of P,
(1) LZa(k) = true or (2) LZa(k) = false,
Cy(k) = 0,
Fa(k) = Fb(k) = the set of digits in P.

The memoization table keeps the number of solutions of subproblems
for all combinations of k , LZa(k),Cy(k),FA(k),FB(k).

The size of the table is at most 18 · 2 · 2 · 1024 · 1024 = 75 497 472.

The complexity is O(logP). However, the big constant factor of
≈ 106 plays a signi�cant role in any implementation.

As there are only 10 digits available, use bitmaps to represent subsets
of forbidden digits in a and b.
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