2019 ACM-ICPC North America Qualification Contest

Solution Outlines

The Judges

October 5, 2019

F M International Collegiate % programming
] % ICpC Programming Contest tools sponsor

~~~~ icpe.foundation

2019 ICPC North America Qualifier Contest

event
sponsor

The Judges NAQ 2019 solutions



D— Missing Numbers — First solved at 0:02

Description
Given an increasing sequence of numbers, identify the missing numbers.

Problem Author: Greg Hamerly NAQ 2019 solutions



D— Missing Numbers — First solved at 0:02

Description

Given an increasing sequence of numbers, identify the missing numbers.

Solution

Read the number of numbers n.

Keep a counter c, starting at 0.

For each of the n input numbers:
@ Increment ¢

@ Read input number x
o While ¢ < x:

e Print ¢
o Increment ¢

Problem Author: Greg Hamerly NAQ 2019 solutions



A— Circuit Math — First solved at 0:03

Description

Given a description of a combinational circuit in postfix format and an
input assignment find the output value.

All input circuits should be considered valid (no missing inputs to a gate,
only one output).

Problem Authors: J. T. Guerin and K. Ericson NAQ 2019 solutions



A— Circuit Math — First solved at 0:03

Description

Given a description of a combinational circuit in postfix format and an
input assignment find the output value.

All input circuits should be considered valid (no missing inputs to a gate,
only one output).

Solution

This is a standard postfix calculator problem, and can be solved using a
stack. Parse each input symbol from left to right:

@ If an input variable is encountered, push its value to the stack.

@ If an operator/gate is encountered, pop the last two values off the
stack (one for negation) and apply the operator. Push the result back
to the stack.

© When finished, print the remaining value on the stack.

Problem Authors: J. T. Guerin and K. Ericson NAQ 2019 solutions




A— Circuit Math — First solved at 0:03

Solution Strategy

The problem guarantees ensure that the algorithm will work:

@ Since every gate is guaranteed sufficient input, there are always
enough values on the stack for an operator/gate.

@ Since there is only one output (guaranteed) there is a single value on
the stack after parsing.

Problem Authors: J. T. Guerin and K. Ericson NAQ 2019 solutions



B— Diagonal Cut — First solved at 0:04

Description
Given a N x M size lattice grid and a diagonal line which goes through the
points (0,0) and (N, M), how many lattice squares are there which are cut

exactly in half?

Problem Author: Marko Berezovsky NAQ 2019 solutions



B— Diagonal Cut — First solved at 0:04

Analytic approach

© The diagonal line equation is y = % - X.

@ A line cuts a square into two equal-area pieces if and only if it passes
through the center of the square.

© The bottom left corner coordinates of such square is an integer pair
(P, q)-
Q The square center coordinates are then (p + %, g+ %)

Problem Author: Marko Berezovsky NAQ 2019 solutions



B— Diagonal Cut — First solved at 0:04

Analytic approach (continued)
© Because the line goes through the square center the task is to count
all integer solutions of g + % = %(p + %) p<N.
@ In the equation, express M as m - gcd(M, N), N as n - gcd(M, N) and
cancel gcd(M, N) to obtain:
© (¥)(2g+1)="(2p+1), where p < N, m and n are coprime.
Q Count all integer solutions of (x).

Problem Author: Marko Berezovsky NAQ 2019 solutions



B— Diagonal Cut — First solved at 0:04

Analytic approach

Count all integer solutions of (%) (29 +1) = 7(2p + 1), where p < N, m
and n are coprime. Case 1: Both n and m are odd.

@ The left side of () is an integer, the right side of (x) must be an
integer too.

@ Clearly, (2p + 1) must be a multiple of n and it also must be odd

because all other factors in (x) are odd. Denote the multiplication
factor by k.

© It holds, (2p + 1) = kn, (k = 1,3,5,...). The condition p < N yields
2p 1 N1 1 :
k=L 42 <20 +1=2-gcd(M, N) + =, or equivalently
k <2.gcd(M,N).
© There are exactly gcd(M, N) odd values of k in the interval
[1,2,...,2-gcd(M, N)], meaning there are exactly gcd(M, N) integer
solutions of (%) and of the whole problem.

v

Problem Author: Marko Berezovsky NAQ 2019 solutions



B— Diagonal Cut — First solved at 0:04

Analytic approach
Count all integer solutions of (x) (29 +1) = 7(2p + 1), where p < N, m
and n are coprime. Case 2: Either n or m is even (both cannot be even,
they are coprime).

© Multiply (%) by n to obtain

Q n(2g+1)=m(2p+1).

© Exactly one of the four factors n, (2g + 1), m, (2p + 1) is even, thus

the parity of the left side and of the right side in the last equation is
not the same.

© Consequently, (%) has no integer solutions, the answer is 0.

Problem Author: Marko Berezovsky NAQ 2019 solutions



B— Diagonal Cut — First solved at 0:04

Pseudocode
In summary,

D = gecd(N, M)

N /=D

M /=D

return D if (N % 2 == 1) and (M % 2 == 1) else O

Problem Author: Marko Berezovsky NAQ 2019 solutions



B— Diagonal Cut — First solved at 0:04

Inclusion-Exclusion

Another approach is to use the principle of inclusion-exclusion. Consider a
grid of size 2N x 2M. There are four options for the intersection of the
diagonal line and a lattice point in the new grid:

© The point would be in the center of a rectangle in the original grid.
@ The point would be on the side of a rectangle in the original grid.
© The point would be a corner of a rectangle in the original grid.

There are two ways to be on the side. The count of each of these is the
simple formula:

gcd(2N,2M) — ged(N, 2M) — ged(2N, M) + ged(N, M)

Problem Author: Marko Berezovsky NAQ 2019 solutions



K— Summer Trip — First solved at 0:05

Description

Given a string s, count the number of intervals [a, b] so that s[a] and s[b]
do not occur anywhere else inside the string.

Problem Author: Marko Berezovsky NAQ 2019 solutions



K— Summer Trip — First solved at 0:05

Given a string s, count the number of intervals [a, b] so that s[a] and s[b]
do not occur anywhere else inside the string.

For each possible starting point a, count valid endpoints b with a linear
sweep. Although seemingly O(n?), you can argue that the total time cost
of the sweep is actually O(26n).

Problem Author: Marko Berezovsky NAQ 2019 solutions



K— Summer Trip — First solved at 0:05

Solution Strategy

For each starting point a:
@ Sweep along the string, checking character a+1, a+ 2, ....
o If s[a+ i] = s[a], stop searching: no further intervals can be valid.

@ Track which letters you see during the sweep. If s[a + i] hasn't been
seen yet, you have found a valid itinerary [a,a + i]. Increment a total

count.
V.

Problem Author: Marko Berezovsky NAQ 2019 solutions



K— Summer Trip — First solved at 0:05

Solution Strategy

For each starting point a:
@ Sweep along the string, checking character a+1, a+ 2, ....
o If s[a+ i] = s[a], stop searching: no further intervals can be valid.

@ Track which letters you see during the sweep. If s[a + i] hasn't been
seen yet, you have found a valid itinerary [a, a + i]. Increment a total

count.

Time Complexity

@ Suppose s[a] = ¢. Then the number of steps in the above calculation
is the distance along the string to the next /.

@ You traverse the whole string once for each /.

@ Total number of iterations is therefore 26n. )

Problem Author: Marko Berezovsky NAQ 2019 solutions




M- Zipline — First solved at 0:07

Description

Given a description of a “zipline” hanging between two poles. How long can
the line be without touching the ground?

pole height
>

[ H 10 15 20
ground

Problem Author: Greg Hamerly NAQ 2019 solutions



M- Zipline — First solved at 0:07

Description

Given a description of a “zipline” hanging between two poles. How long can
the line be without touching the ground?

Solution

. Ignore rider’s height r — subtract r
ol g from pole heights g and h. Let
. g+« g—rand h« h—r.

‘ b Find f(x) that gives length of a line
that just touches the ground at
0 x w horizontal position x.

We can find the x that minimizes this
function using binary or grid search.

<

Problem Author: Greg Hamerly NAQ 2019 solutions



M- Zipline — First solved at 0:07

Solution Strategy

12

1019

pole height
>

The length of the zipline that is connected to the poles and touches the

ground at x is:
f(x)=a+b=1+/g>+x2+/h?+(w—x)?

Problem Author: Greg Hamerly NAQ 2019 solutions




M- Zipline — First solved at 0:07

f(x) =vVg2+x%2+1/h?+(w—x)?

f(x) is concave, so we can search it.

Problem Author: Greg Hamerly NAQ 2019 solutions



M- Zipline — First solved at 0:07

Solution Strategy

The function f(x) represents the longest zipline at each x.

f(x) = Vg2 + x> +/h? + (w — x)?

We need to find the minimum of this function (the shortest longest length).
l.e. we need to find where the derivative f'(x) = 0:

£y — X n X—w
Ver+x2 R+ (w—x)?

We can do this via binary or grid search on x.

For each x, if f/(x) < 0 then x is too small; otherwise x is too large.

Problem Author: Greg Hamerly NAQ 2019 solutions



M- Zipline — First solved at 0:07

There's also a closed-form solution (left to the reader; search for “Heron's
Problem”).

A lot of submissions failed to pass due to division by zero, and printing
NaN.

Problem Author: Greg Hamerly NAQ 2019 solutions



|- Slow Leak — First solved at 0:12

Description

Given a graph G where some nodes are designated as “filling stations”, and
a maximum distance d that you can travel without visiting a filling station,
what is the shortest path between a starting node (school) and a target

node (home).

Problem Author: Mike Domaratzki NAQ 2019 solutions



|- Slow Leak — First solved at 0:12

Given a graph G where some nodes are designated as “filling stations”, and
a maximum distance d that you can travel without visiting a filling station,
what is the shortest path between a starting node (school) and a target
node (home).

Calculate shortest distances between all nodes in G, then construct a new
graph whose nodes are the filling stations, the start and the target nodes
only. The edges give shortest paths between the nodes in the original graph.
Calculate the shortest path in the new graph.

Problem Author: Mike Domaratzki NAQ 2019 solutions



|- Slow Leak — First solved at 0:12

Solution Strategy

@ Use Floyd-Warshall Algorithm to calculate the shortest path between
all pairs of nodes in the graph G.
o Create a new graph G’ where the nodes are only
@ The filling stations in G.
@ The start (1) and target (n) nodes in G
@ The edge lengths in G’ are the shortest paths between nodes in the
original graph G with length at most d (the maximum distance you
can travel).
@ Use Dijkstra’s algorithm (or Floyd-Warshall again) to calculate the
shortest path between the start and target in G'.

Problem Author: Mike Domaratzki NAQ 2019 solutions



G- Research Productivity Index — First solved at 0:15

Description

Given the acceptance probabilities of n papers, compute the maximum
expected index a?/* assuming that an optimal set of papers are chosen to
submit. Here s is the number of papers submitted, and a is the number of

papers accepted.

Problem Author: Bowen Yu NAQ 2019 solutions



G- Research Productivity Index — First solved at 0:15

Description

Given the acceptance probabilities of n papers, compute the maximum
expected index a?/* assuming that an optimal set of papers are chosen to
submit. Here s is the number of papers submitted, and a is the number of
papers accepted.

| \

Solution
Observe that:
e For a given integer k, if we are to submit k papers, we'd better submit
the k papers with the highest probabilities.

@ Knowing the set of papers to submit, we can compute the expected
index using dynamic programming.

Problem Author: Bowen Yu NAQ 2019 solutions



G- Research Productivity Index — First solved at 0:15

Solution Strategy

@ Enumerate the integer k, the number of papers to submit.

@ Use dynamic programming to compute the expected index when we
submit the k papers with the highest probabilities.

@ Take the maximum expected index across all choices of k.

Assume the papers are ordered by descending probabilities, and p; is the ith

largest probability, then the dynamic programming can be formulated as
follows:

o Let f(i,)) be the expected index after considering the outcome of the
first / papers.

@ We have the recurrence f(i,j) = pif (i +1,j+ 1)+ (1 — p;)f (i + 1,J).

o Boundary conditions: f(k,0) = 0; f(k, ) = ji/k for j > 0.

Problem Author: Bowen Yu NAQ 2019 solutions



G- Research Productivity Index — First solved at 0:15

Solution Time Complexity

Enumerating k takes O(n) time. The dynamic programming for each k
takes O(n?) time. The entire solution takes O(n®) time.

Optimization (not required for AC)

Every time we add a new paper, we don’t need to compute the DP table
from scratch. For the ith paper, only f(i,/),0 <j </ needs to be
updated. The overall complexity can be brought down to O(n?).

V.

Incorrect Approach

Let g(k) be the expected index of submitting the k papers with the highest
probabilities. Note that g(k) is not a monotonic function. We therefore
cannot greedily stop the enumeration of k upon the first decrease of g(k)!
Using binary search or ternary search to find the optimal value of k may
also lead to wrong answers.

4

Problem Author: Bowen Yu NAQ 2019 solutions




C- Gerrymandering — First solved at 0:16

Description

Given an allocation of voting precincts to districts and party vote totals for
each precinct, determine the party that wins in each district. Finally,
compute the efficiency gap over all districts.

Problem Author: Greg Hamerly NAQ 2019 solutions



C- Gerrymandering — First solved at 0:16

Description

Given an allocation of voting precincts to districts and party vote totals for
each precinct, determine the party that wins in each district. Finally,
compute the efficiency gap over all districts.

@ Add up the total number of votes for A and B within each district.

@ After summing all votes, compute the wasted votes for each party
district, and report them.

@ Sum the total number of wasted votes for A and B, and compute the
efficiency gap according to the formula given in the problem.

Problem Author: Greg Hamerly NAQ 2019 solutions



J— Stop Counting — First solved at 0:18

Description

Given an array of integers, find the maximum attainable average after
deleting some subarray.

Problem Author: Arnav Sastry NAQ 2019 solutions



J— Stop Counting — First solved at 0:18

Given an array of integers, find the maximum attainable average after
deleting some subarray.

The maximum average will always be prefix or a suffix of the array. Try all
of them.

Problem Author: Arnav Sastry NAQ 2019 solutions



J— Stop Counting — First solved at 0:18

@ Every attainable array can be considered as some prefix with average
A and some suffix with average B which do not overlap.

@ Say A has x elements and B has y elements (x + y < n).

o Then the weighted average is A8

X+y
e WLOG, assume A < B.
e Then xA+yB < xB+yB _ (x+y)B _B

xX+y — Xx+y X+y

Runtime: O(n).

Problem Author: Arnav Sastry NAQ 2019 solutions



H— Running Routes — First solved at 0:2

Description

Find the maximum number of straight lines that can be drawn between
vertices of a polygon such that no lines intersect, and each line connects
two vertices that are "connectable" according to a provided matrix.

Problem Author: Nathan Mytelka NAQ 2019 solutions



H- Running Routes — First solved at 0:26

Description

Find the maximum number of straight lines that can be drawn between
vertices of a polygon such that no lines intersect, and each line connects
two vertices that are "connectable" according to a provided matrix.

| A\

Solution

Find the maximum number of lines that can be drawn for each set of three
consecutive vertices, then expand this to increasing numbers of consecutive
vertices using the previously calculated results.

\

Problem Author: Nathan Mytelka NAQ 2019 solutions



H- Running Routes — First solved at O:

Solution Strategy

© Create an n x n array. The number at (i,j) is the max number of lines
that can be drawn among the j vertices starting at index i.

@ The value for any set of three consecutive vertices is easily found from
the matrix by checking each option.

© The value for n consecutive vertices starting at i is the maximum of
the following. For each possible connection between vertex n and a
vertex j with i < j < n, sum the maximum (previously found) for
vertices one through j — 1 and the maximum for vertices j + 1 through
n —1 and add one if vertex j is connectable to vertex n. If the
maximum for vertices 1 through n — 1 is greater, simply store that.

@ Use the previous step to fill in the rest of the table, calculating all sets
of three vertices starting before the last two, all sets of four vertices
except starting at the last three, and so on. The maximum for all n
vertices is the answer.

Problem Author: Nathan Mytelka NAQ 2019 solutions




E— NVWLS - First solved at 1:03

Given a dictionary of words and a message without vowels and spaces,
reconstruct the message using only dictionary words. Break ties by largest
number of vowels.

Message length: L = 300,000, total number of characters in dictionary
S5 =100, 000, no specific limit on number of words.

Problem Author: Godmar Back NAQ 2019 solutions



E— NVWLS - First solved at 1:03

Given a dictionary of words and a message without vowels and spaces,
reconstruct the message using only dictionary words. Break ties by largest
number of vowels.

Message length: L = 300,000, total number of characters in dictionary
S5 =100, 000, no specific limit on number of words.

Preprocess dictionary to remove vowels, then identify all matches of
dictionary entries in the message, compute optimal word break using DP
based on number of vowels, then reconstruct message.

Problem Author: Godmar Back NAQ 2019 solutions



E— NVWLS - First solved at 1:03

Solution Strategy

@ Implementing this strategy requires the use of an efficient string
matching strategy. Worst case: O(L+v/S) matches.

@ Processing each match must be done in O(1).

@ (1) use Aho-Corasick: complexity is O(|matches|)

@ (2) use hashing: complexity is O(L|different word lengths|)
o Both are bounded by O(LV/S).

@ DP using number of vowels is relatively straightforward.

Problem Author: Godmar Back NAQ 2019 solutions



L— Traveling Merchant — First solved at 1:09

Description

Given the prices of buying and selling goodies at n < 10° towns arranged in
a row, answer g < 10° range queries. Each range query gives a starting
town s and a destination town t, and asks about the maximum profit a
merchant can earn when he travels from s to t at a speed of one town per
day and buys and sells at most one goodie on the way. Each town's price
fluctuates daily according to a weekly schedule.

Problem Author: Bowen Yu NAQ 2019 solutions



L— Traveling Merchant — First solved at 1:09

Description

Given the prices of buying and selling goodies at n < 10° towns arranged in
a row, answer g < 10° range queries. Each range query gives a starting
town s and a destination town t, and asks about the maximum profit a
merchant can earn when he travels from s to t at a speed of one town per
day and buys and sells at most one goodie on the way. Each town's price
fluctuates daily according to a weekly schedule.

Observe that each price has a cycle of seven days, we can precompute
f(s,t,d), the maximum profit the merchant can earn if he travels from s
to t, and arrives at s on weekday d. There are only seven possible choices

of d.

Problem Author: Bowen Yu NAQ 2019 solutions



L— Traveling Merchant — First solved at 1:09

Solution Strategy

@ For the simplicity of the discussion, we assume the merchant travels
left to right in this editorial. The other direction is symmetric.

@ We cannot afford computing f(s, t,d) for every s, t. We can use a
range data structure to help us maintain a subset of the ranges that
are useful to answer any queries. One good data structure is the
segment tree.

e Let minPrice(/,r,d) and maxPrice(l, r,d) be the minimum and
maximum price the merchant can encounter if he travels from / to r,
starting on weekday d. These values can be precomputed using
standard segment tree construction for range min/max queries (RMQ).

Problem Author: Bowen Yu NAQ 2019 solutions



L— Traveling Merchant — First solved at 1:09

Solution Strategy

@ For a segment tree node that manages the range [/, r], we precompute
the value f(/,r,d) for every d. Let m = (/4 r)/2, the middle point of
the range. Let d, be the weekday on which the merchant will arrive at
town m+ 1. We have:

maxPrice(m + 1, r,d,) — minPrice(/, m, d)

f(l,r,d) =max < f(I,m,d)
f(m+1,r,d,)

@ We can construct the tree in O(7nlog n) time.

Problem Author: Bowen Yu NAQ 2019 solutions



L— Traveling Merchant — First solved at 1:09

Solution Strategy

For each query range [s, t], the segment tree has O(log n) nodes that are
entirely covered by [s, t] with a parent that is not entirely covered. These
are the hit nodes of the segment tree. We need to retrieve the following
values from hit node i (numbered from left to right) that manages [/;, r;]:
minValue(l;, rj, d;), maxValue(l;, rj, d;), f(/;, ri, d;). Here d; is the weekday
on which the merchant arrives at town /;. The answer to the query is
therefore:

max; i {maxValue(lyr, ry, di) — minValue(l;, ri, d;)}

X{max,-{f(/,-,r,-,d,-)}

Querying the segment tree and finding the above max values both take
O(log n) time. Answering each query is thus O(log n).

Problem Author: Bowen Yu NAQ 2019 solutions



F— Prospecting — First solved at 3:33

Description

Given a tree representing a mine, with tunnel lengths y; and rewards x; at
nodes, and a special “motherlode” leaf node, compute the amount of
money you need to start with to find the motherlode for the worst and best
case tunnel digging order.

Problem Author: Etienne Vouga NAQ 2019 solutions



F— Prospecting — First solved at 3:33

Given a tree representing a mine, with tunnel lengths y; and rewards x; at
nodes, and a special “motherlode” leaf node, compute the amount of
money you need to start with to find the motherlode for the worst and best
case tunnel digging order.

Both halves of the problem solved separately, using two different recursive
strategies.

Problem Author: Etienne Vouga NAQ 2019 solutions



F— Prospecting — First solved at 3:33

Solution Strategy: Worst Case

Worst-case behavior: waste as much money as possible digging into side
branches of the mine that are not on the path to the motherlode. Then dig
one step towards the motherlode. Repeat.

Problem Author: Etienne Vouga NAQ 2019 solutions



F— Prospecting — First solved at 3:33

Solution Strategy: Worst Case

Worst-case behavior: waste as much money as possible digging into side
branches of the mine that are not on the path to the motherlode. Then dig
one step towards the motherlode. Repeat.

Computing Wasted Money

How much money waste(i) can be wasted exploring the mine behind tunnel
i? Two options:

@ Don’t break into the ore chamber: waste y; — 1 dollars

o Break into the ore chamber: waste

Yi—xi+ Z waste()).

children j

e waste(/) is the max of these options. Compute recursively.

v

Problem Author: Etienne Vouga NAQ 2019 solutions




F— Prospecting — First solved at 3:33

Solution Strategy: Best Case

Define a subtree of edge i to be optimal if (a) exploring the subtree yields a

profit and (b) the initial money required to explore the subtree is no greater
than for any other profitable subtree.

invest5, -7~
profit 1 /

*\ invest 10,
\\\ profit oo
\

TN

7 '\ invest7,
\Y .
“Wprofit oo
W

All optimal subtrees of this mine are circled.

Problem Author: Etienne Vouga NAQ 2019 solutions



F— Prospecting — First solved at 3:33

Solution Strategy: Best Case

Define a subtree of edge i to be optimal if (a) exploring the subtree yields a
profit and (b) the initial money required to explore the subtree is no greater
than for any other profitable subtree.

Key Claim

It is always beneficial to explore the optimal subtree T of the mine
entrance with least investment cost.
o After exploration, you end up with more money than you started.

@ Either T includes the motherlode, or exploring T requires less
investment than reaching the motherlode (since any subtree involving
the motherlode is always profitable).

Problem Author: Etienne Vouga NAQ 2019 solutions



F— Prospecting — First solved at 3:33

Computing Optimal Subtrees

e If x; > y;, already found an optimal subtree (with profit x; — y;).

@ Otherwise, compute optimal subtrees for all child edges.
@ Until the subtree is profitable, explore child optimal subtrees, in order
of increasing initial money required.

@ After exploring a child optimal subtree, reparent any orphaned
portions of the child: edges encountered in the child that weren't
explored now have node / as parent.

@ Use priority queues to keep the whole calculation O(nlog n).

Problem Author: Etienne Vouga NAQ 2019 solutions



