Chapter 6

Dynamic Programming

Like the greedy algorithms we saw in the last chapter, dynamic programming,
or DP, represents a class of algorithm more-so than a description of an algorithm
itself. While we can can define dynamic programming with some mumbo-jumbo
such as a method of computing a solution based on breaking it up into consistent
subproblems and then solving those subproblems iteratively to arrive at the ul-
timate answer, but that is largegly meaningless unless you already understand
DP. That being the case, we’ll jump in with some standard problems and show
how the technique arises naturally and understandably.

6.1 Fibonacci Numbers

The fibonacci sequence is the well known sequence: 1,1,2,3,5,8... . While
trivially calculable by hand, it is more formally defined as

fn = fn—1+ fot1

where
fo=1land f =1

6.1.1 Recursive Computation

The above recursive relation extends naturally to code.

// returns the n’th fibonacci number
int fib(int n) {
if (n == 0 || n == 1) return 1;
return fib(n - 1) + fib(n - 2);

While the above code is correct, we find it is also incredibly slow! Even
attempting to compute £ib(50) takes a significant amount of time. One can see
why this is intuitively, as the algorithm will take the following steps:
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e Evalute £ib(50)

o Evalute fib(49)
. Evalute £fib(48)

e Evaluate fib(48)

. Evalute £ib(47)

We can see even in this small breakdown that we are computing the same thing
multiple times! The reality is quite ugly, and we can see the excess of times we
evaluate each fib(n) after making a call to £ib(10).

n 0 1 2 3 4 |516|7|8|19]10
calls to fib(n) 34155134 (21|13 |85 (3211

We've made 177 total recursive calls just to compute the 10th fibonacci
number! This number grows exponentially with our input, which explains why
the relatively small input of 50 takes a significant time to execute. We have
to ask why, despite making 21 separate calls to £ib(3), do we have to actually
compute £ib(3) 21 separate times? Do we expect the 21st computation to be
different from the 20th or 19th?

6.1.2 Saving work with Memoization

As the previous sentence so subtly hints, the recursive function has an important
property:

For a given n, every call to fib(n) will yield the same result
This means that once we have computed a given value of £ib(n), we can SAVE

that value, and directly return it the next time it is requsted, instead of recom-
puting the value again. The function looks like this:

// returns the n’th fibonacci number
int[] memo;
int fib(int n) {
memo = new int[n + 1]; // size array to ensure we can cache all
values <= n
Arrays.fill(memo, -1); // use -1 to indicate "unknown"
return fib_helper(n);

}
int fib_helper(int n) {
if (memo[n] != -1) return memo[n]; // if we already computed, don’t
recompute
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if (m == 0 || n == 1) memo[n] = 1;
else memo[n] = fib(n - 1) + fib(n - 2); // save newly compute value

return memo [n];

This small optimization, simply saving the result and returning, causes an
immense speedup. We likely can run for n into the hundreds of millions. The
call counts reflect this speedup; the 19 calls being a far cry from the earlier 177.

n 012345678910
calltofib(m) |1 |2 (2|2 |2|2|2|2|2]|1] 1

Runtime

The runtime analysis of this optimization is quite simple, and consists of two
parts:

1. We execute the main body of the fib_helper function exactly once per
entry of the memo array.

* An execution of the main body of the function can only occur if the
entry in the array which equals -1, and that execution causes the
entry to not equal -1, limiting the number of executions to the size
of the array

2. Each execution of the main body of the function makes at most 2 function
calls

Since we are limited to the size of the array (O(n)), and the work done for
each entry of the array is constant time, the total execution time is also O(n).

6.1.3 Eliminating the Stack

Though we have addressed the runtime nicely, we find the stack limitation
prevents us from evaluating particularly large values of n. To solve this, lets
look at the state of the array as the algorithm progresses.

Figure 6.2: The state of the stack when we first recurse to £ib(2). The two
dependent values are known, so we can compute the value.
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b1 Ji1 ]-2 |53 [+5 [s8 [613 [r21 [s34 [655 [w89 |

Figure 6.3: Values are filled into the array as the dependencies become fulfilled.

It comes as no surprise that since the arrows indicating the recursive calls
always go towards the left, the array ends up being populated starting from the
left and progressing towards the right. Given that we can determine the order
in which the array will be populated, we can instead eliminate the recursion
and directly calculate the values in that order.

// returns the n’th fibonacci number
int[] memo;
int fib(int n) {
memo = new int[n + 1]; // size array to ensure we can cache all
values <= n
memo[0] = 1; // initialize the base cases
memo[1] = 1;
for (int i = 2; i <=n; i++) { // loop over the order the array would
get populated
memo[i] = memo[i - 1] + memo[i - 2]; // exact same computation
as before

}

return memo[n];

This move from a recursive solution where we cache the result of each call
to an iterative one where we directly compute the values in a logical order is
dynamic programming.

6.2 Building Blocks

Now that we’ve seen dynamic programming used to solve a rather trivial prob-
lem, we can break out some of the building blocks which apply more generally.
Formulating a DP solution requires 4 common building blocks:

1. What the index into the DP array represents
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e For fibonacci, this was 4, the index of a fibonacci number
2. What value is stored at each index in the DP array

e The actual value of the i-th fibonacci number
3. What is the relation between entries

® memo[i] = memo[i - 1] + memo[i - 2];
4. In what order are the entries computed

* From the relation, we can see they are computed from small to large
i

5. What are the base cases

e Any entry for which the relation would refer to a nonexistent entry,
in this case, where i =0 and i =1

® memo[0] = memo[1] = 1;

Once we've answered these four questions, we can translate our candidate
solution to code.

6.3 Multiple Dimensions

The fibonacci example above only had a single index into its flat DP array. This
is considered a 1-dimentional DP. DPs we run into in the wild will generally have
multiple indices into their array, which can be 2-D, 3-D, or any higher amount.
Let’s take a look at how that works using binomial coefficients (N-choose-R).

If you recall, the binomial coefficients can be computed using Euler’s triangle,
where each element is the sum of the two elements just above it. We'll left justify
the grid to make it easier to index.

0,01
1,01 111
201 2,12 221

Two arrows show, matching the definition, that ncr(i,j)= ncr(i-1, j)+
ncr(i-1, j-1). This looks an awful lot like a recursive relation. Can we define
the other components required for DP?
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1. Indices: the N and R of N-choose-R
Value: the actual value of N-choose-R

Relation: ncr(i,j)= ncr(i-1, j)+ ncr(i-1, j-1)

= W

Base Cases: This one is a bit trickier. Based on the relation, we know
where all the dependency arrows point. So if we look at the triangle, where
do we have to define base cases? The Arrows pointing directly upward
run into a "wall” when n == r, and the diagonal arrows do the same when
r == 0. This allows us to define the following two base cases that will
bound any of the relationships

(a) ncr(i,i)= 0
(b) ner(i,0)= 0

With these four things defined, we can proceed to write our code in a very
similar manner to fibonacci.

// returns n-choose-r
int[][] memo; // use 2-D array since 2 dimensions
int fib(int n, int r) {
memo = new int[n + 1][n + 1]; // size array to ensure we can cache
all values <= n
// initialize the base cases
for (int i = 0; i <= n; i++) {
memo [i] [0] 1;
memo [i] [i] 1;

}

// loop over the array in the direction opposite the dependency
arrows

for (int i = 2; i <= n; i++) for (int j = 1; j < i; j++) {
memo [1] [j] = memo[i-1][j] + memo[i-1]1[j- 1]; // the recursive

relation
}
return memo [n] [r];
}
Runtime

We can analyze the runtime very similarly to how we did for fibonacci, namely:
1. Determining how many array elements we have to populate
2. Determining how much work we have to do to compute each one

The array is sized at O(n?), and the fact that we only populate half of it
(j < 1), it does not change the runtime. The relation involves a constant number
of lookups, meaning the overall runtime is still quadratic.
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6.3.1 Benefits of Recursion

So far, we’ve extolled the benefits of DP over recursion with memoization, but
is it ever worthwhile to write a recursive solution? Sure.

e When the depth of the recursion isn’t particularly deep, and the recursive
solution is easier to wrap your head around

e When the number of reachable states is sparse. So far, we’ve seen DP
examples which depend on almost the entire array being populated. This
is not always the case. There are some DP problems which require large
tables where many states are not useful or reachable. With a DP solution,
we still iterate over and solve those cases. A recursive solution, however,
is on-demand. Namely, it only makes a recursive call (and subsequently
populating an element in the array) when that value is actually known
to be needed. If the array is sparse enough, one might even consider a
hashmap to store the memoized solutions, instead of an array.

e When it’s hard to determine an order to populate the array. With the
examples we've seen, it’s been rather straightforward to figure out where
the dependency arrows point, and thus what order to iterate through the
array. This is not always the case. Sometimes it is very difficult to come
up with a simple ordering. Recursion solves this problem by computing
values as they’re needed instead of in some global order.

In short, while DP solutions are great and often work, sometimes it is useful
or even necessary to revert to recursive ones.

6.4 Standard DP Problems

6.4.1 Knapsack

Consider the following problem:

Sam is at a buffet with many different types of food. Each kind
of food on te buffet has an associated happiness, such that Sam’s
overall happiness will increase by h; after eating a serving of food 1.
Sam doesn’t like to eat very much, however, and so has a maximum
number of servings (S). What is the maximum amonut of happiness
Sam can achieve while only eating S servings?

There are three distinct characteristics of this problem that strongly indicate
it falls into this class of knapsack problems.

1. There are two variables, of which one must be maximized, and the other
minimized. Here, we are trying to maximize happniess while minimizing
(or bounding) the number of servings.
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2. There are multiple classes of items, each contributing varying amounts to
the two variables. Here, each food has a different happines value.

3. We can choose to take or not take some of each item

We’ll consider three variations of this problem that result in different solu-
tions.

Greedy Knapsack

This problem is actually quite trivial as stated. There is no limit to the amount
of any individual food item we can take, and since everything is done servings,
regardless of our choices, we can fully eat up to our serving limit. As such, there
is no reason to not greedily select whichever food has the highest happiness per
serving, and consume S servings of it.

Even if we modify the problem slightly, and place a limit on amount of each
amount of food we can take, we can still greedily select that highest happiness
food, and eat it until it runs out before consuming the next highest food (and so
on). We will be able to fully consume our limit regardless of the food selection.

A third slight variant, perhaps entailing a serving limit which is non-integral,
but allowing fractional servings of individual food items has the same result. We
can fully consume our limit regardless of selection, so should taked the highest
happiness first.

The common theme of all these variants is that regardless of the slightly
differing constraints, in each case we are guaranteed to hit the limit exactly. If
that is the case, then the greedy solution will apply.

Knapsack with Repeats

Let’s add the following to the problem to ensure it doesn’t trivially reduce to
the greedy solution.

Each food i has an associated quantity ¢g;. The food ¢ must be
consumed in multiples of g;.

While it may seem innocuous, this small additional restriction means that
there is no longer a guarantee we can hit S exactly. Here’s an example:

’ food H happiness \ quantity ‘
0 100 10
1 95 4

If § = 10, then taking the greedily eating food 0 will garner us the optimal
1000 happiness. However, if § = 12, then we will still only be able to get
the same 1000 happiness (without the ability to eat 2 servings of either of the
available foods). If we instead select the slightly less happy item 1, however, we
will be able to consume 12 servings of it, leading to a far greater happiness of
1140. The greedy solution fails and we need something a bit more clever.

18



Often when greedy solutions fail, we look to brute force. In this case, a
brute force might involve evaluating every possible order of eating food up to
the serving limit, and taking the one which results in the highest happiness.
Let’s take a look at the code to do this:

// returns the maximum happiness for S servings
int happy(int s) {
if (s == 0) return 0; // base case...no servinces, can’t eat!

int ans = 0;

// just try everything and then backtrack. Only recurse if we have
enough servings left and
// the recursion would yield an actual result
for (int i = 0; i < food_types; i++) if (q[i] <= s) {
int recursion = happy(s - ql[il); // value we get if we eat this
food, so we have s - q[i] servings left

// if eating q[i] of this food gives us a better answer, do it!
ans = Math.max(ans, h([i] * q[i] + recursion);

return ans;

While this solution would be correct, it is undoubtedly too slow for any
reasonable limits. Think back to fibonacci. We were able to solve the problem
more quickly by realizing that calls to fib(n) would always yield the same results.
In this case, will happy(s) ever return a different value for a given value of s?
Intuitively, is eating one food than other any different than eating them in the
opposite order? Just like with fibonacci, we see that in our execution, given a
serving count and amount of happiness we have while at that serving count, we
don’t care what we ate to get there, the solution of the remainder of the problem
will be unaffected. Similar to fibonacci again, we can cache these results and
significantly decrease our runtime.

// returns the maximum happiness for S servings
int[] memo;
int happy(int s) {
memo = new int[s + 1]; // size array to ensure we can cache all
values <= s
Arrays.fill(memo, -1); // use -1 to indicate "unknown"
return helper(s);

}
int helper(int s) {
if (memo[s] != -1) return memo[s]; // if we already computed, don’t
recompute
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memo [s] = 0;

for (int i = 0; i < food_types; i++) if(ql[i] <= s) {
int recursion = happy(s - qlil); // if we eat this one, we have
s - ql[i] servings left

// if eating q[i] of this food gives us a better answer, do it!
memo [s] = Math.max(memo[s], h[i] * q[i] + recursion);

}

return memo[s];

Whether we needed to go through the exercise of writing out the recursion,
we should be able to construct the four elements required to execute the DP.

1. Indices: The amount of servings we can consume

2. Value: The maximum amount of happiness we can get in that many serv-
ings

3. Relation: memo(s) = max;cfoods(hi * ¢; + memo(s — ¢;)), the food which
gives us the maximum happiness if eaten and added to the value after
recursing on s — g;

4. Base Cases: We don’t recurse if a food would give us negative servings,
and defalt to 0.

With the above, we can easily construct the DP code.

// returns the maxium happiness for S servings
int[] memo;

int happy(int s) {
memo = new int[s + 1]; // size array to ensure we can cache values

<=s
Arrays.fill(memo, 0); //default base case

for (int i = 1; i <= s; i++) { // loop over array in reverse order
of dependencies
for (int j = 0; j < food_types; j++) if(ql[j]l <= i) { // can only
evaluate if the amount of servings represented by i is more
than minimum quantity of this food
memo[i] = Math.max(memo[i]l, h[j] * q[j]l + memo[i - q[j11);
}
}

return memo[s];

Lets work through one example to visualize how this ultimatly works. We’ll
use the following two foods types.
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’ food H happiness \ quantity ‘

0 20 5

1 15 3
We’ll evaluate up to s = 8, and for the purposes of demonstration, we’ll use

red to indicate un-processed nodes as well as cases we skip since they would

push us off the array.

50 60 [0 [s0 |

b0 [0 [0 [s0 [s0

Figure 6.4: The initial state of the array

food 0, food 1

b0 Jio |20 [s0 [0 |50 [0 [-0 [s0 |

Figure 6.5: evaluation of entry 1. Both food types go off the end of the array,

so there is no solution

food 0

%
[545 [0 [s0 [¢0 [0 [s0 |

b0 Ji0 |20

Figure 6.6: Once we get to S = 3, we can consume one of the foods, and note
the dependency arrow accesses the first element in the array

food 0

ﬂ
5100 [ 0 |70 [s 0 |

b0 [:0 J-0 [s45 [40

Figure 6.7: Once we get to S = 5, we can eat food 0, so get a solution.

food 0

food

[0 [s45 [+ 0 [5100 [s90 [0 [s0 |

Lo [0

Figure 6.8: We can only eat food 1 here.
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food 0

ﬂ

b0 [20 |20 [s45 [s 0 [5100 [¢90 [- 0 [s145 |

Figure 6.9: We can eat either food here. They both ultimately lead to the same
result, which we can return as our solution

The runtime analysis follows similarly to how it did before. The array size
is O(s), simple enough, but the work done to populate each entry in the array,
unlike earlier, involves walking each type of food. This makes the overall runtime

O(s x foods).

Item Limitations

We'll consider one final variant of this problem, perhaps the most common: one
adjusting the previous requirement.

Each food ¢ has an associated quantity ¢;. The food ¢ can only
be consumed once, using exactly g; servings.

While this may seem like a small change, it has major ramifications on the
algorithm. The standard way to apply a restriction like this would be to encode
whether each particular food has been eaten as an index into our memoization
table. Now, when we iterate over all foods for each entry of the table, we skip
those which our index has indicated we’ve already used (usually represented
by a bitmask). While this solution would be correct, we now have added an
exponential factor to our runtime, giving us O(s x 2f°°% x foods). This will
likely be too slow.

If we think about how a solution is calculated, we see where duplicate work
occurs. Consider a solution which requires us to eat foods 0, 1, 2, and 3. In the
course of evaluation, we’ll have to evaluate states that require us to have eaten
the following combinations of food:

0and 1

0 and 2

0 and 3
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e 1 and 2

* etc.

Even though each of the individual lookups is inexpensive, the fact that we
have so many lookups and states is compelling. Like the previous variations, we
don’t really care what order we eat the food in, and yet we’re evaluating every
order.

Since for a given solution, the order we consume the foods in doesn’t change
the solution, a very common technique is to apply an arbitrary ordering.

If you consume food of index %, you may not afterwards consume
any food of index z < i.

This additional restriction does not change the solution (since we can just re-
order the foods that lead to the optimal solution to go increasing index order),
but how does it change how we construct our DP? Since the food-eating must
go in a specific order (and we can imagine ourselves walking past a buffet, loo-
ing at each individual food), we can simply add the food item we're currently
evaluating to the state. Our DP factors look as follows:

1. Indices:

(a) The number of servings we have available to consume

(b) The index of the food we’re currently standing in front of (we've
already evaluated those with index less than that, and will never
evaluate them again per the new restriction). It is a good rule of
thumb that any time we go in some order, such as by time, or food
order, it will be an index of the DP.

2. Value: The maximum amount of happiness we can get in that many serv-
ings (same as before)

3. Relation: memo(s, food) = max(memo(s,food—1), ktood X gfooq+memo(s—
Gfood; food — 1)). We have two options, we either skip this food, meaning
we would recurse on all previous foods with the same number of servings,
or we DO eat this food, and we recurse with the appropriately limited
servings, and all previous foods.

4. Base Cases: Same as before, we can’t evaluate outside the bounds of the
array
Runtime

With our new index, we only have s x foods elements in the array, and we
only have 2 lookups to perform for each entry, bringing out exponential runtime
down to O(s x foods).
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// returns the maxium happiness for S servings
int[] [] memo;
int happy(int s) {
memo = new int[s + 1] [food_types + 1]; // size array to ensure we
can cache values <= s, and for every food type. Note we’ll have
to l-index the food types so that 0 = no foods remaining, 1 =
eat the 0-th food, etc.
for(int i=0;i<=s;i++)Arrays.fill(memo[i], 0);

for (int i=0; i < food_types; i++) for (int j=1; j <= s; j++) { //
loop over all food types, and for each food type, check every
possible amount of servings remaining
if (q[i] > j) continue; // not enough servings

// we either don’t eat the food, or we do

// note the 1 indexing of the food

memo [j] [i+1] = Math.max(memo[j][i], h[i] * q[i] + memo[j -
qlil1lil);

return memo([s];

As with the non-limited case, we can visiually see how the array gets popu-
lated. We'll use the following food categories:

‘ food H happiness ‘ quantity ‘

0 1 1
1 4 1
2 4 2

We’ll simulate up to a maximum of 3 servings.

Foods

0,0 1,0 2,0 3,0

0 0 0 0

Servings
Figure 6.10: The initial state of the array
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0,2 1,2 2,2 3,2
0 0 0 0
Foods
0,1 1,1 2,1 3,1
0 1 1 1
| | |
0,0 1,0 ¥ 2,0 ¥ 3,0 ¥
0 0 0
Servings

Figure 6.11: When we evaluate each entry for food 0 (index 1), we simulate
eating and not eating it and take the maximum. The diagonal arrows represent
eating the food (since we have to subtract the servings), and the vertical arrows
represent skipping this food, since we have the same amount of servings avail-
able. In both cases, we go to the row below, since that represents the previous
food item. In this case, eating the food is always optimal.

4
Foods }
1

Servings
Figure 6.12: We evaluate food 1. We find eating it is always optimal. Each value
will end up being the sum of the happiness of food 1 plus the values pointed to
by the diagonal arrows, simulating eating this food.
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0,3 1,3 2,3 3,3
0 4 5 9
— | 1 |
02 <12 s e 3,2 !
0 4 5 5
Foods
0,1 1,1 2,1 3,1
0 1 1 1
0,0 1,0 2,0 3,0
0 0 0 0

Servings
Figure 6.13: We evaluate food 2. When we have fewer than 2 servings available,
we skip this food and just use the two previous foods (vertical arrow). When
we have 2 servings, we find it is still optimal to skip this food (5 vs 4). When
we have 3 servings, we eat this food and come out better (9 vs 5). Note the
diagonal arrows go back 2 boxes since food 2 takes 2 servings.

Another Example

Since it is so common, lets consider another example.

Barbara likes to go skiing, and while doing so, she likes to have
as much fun as possible. Barbara isn’t very good, though, and if
she goes down too long of steep slope, she will crash and be severely
injured. The slope is divided up into sections, section 0 at the top
and n at the bottom. Each section has an associated fun value, and
danger value. As Barbara skis down the slope, she accumulates the
fun and danger from each section. In order to prevent the accumu-
lated danger from exceeding the amount which would cause barbara
to crash, Barbara can choose to walk any number of sections. If
she chooses to walk a section, her danger decreases by 10, and Bar-
bara accumulates no fun for the section. Further, her accumulated
fun halves. What is the maximum amount of fun barbara can have
without her danger exceeding the amount that would cause her to
crash?

Looking back at our earlier list of factors that hint hint at knapsack:

1. There are two variables, of which one must be maximized, and the other
minimized: We are trying to maximize fun while restricting danger

2. There are multiple classes of items, each contributing varying amounts to
the two variables: each section may increase or decrease the fun/danger

3. We can choose to take or not take some of each item: we can walk or not
walk
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Since we only pass each section once, this is most similar to the limited
knapsack. Lets construct the four elements of the DP:

1. Indices: We have to know our current danger so we don’t exceed it. We
have to know which segment we’re on (like knowing which food before).
These two variables compose our index.

2. Value: The thing we're trying to maximize: our fun!

3. Relation: Like before, we can choose to either walk or ski any section.
The relation is very similar before with:
* s: the segment we're on
e d: the amount of accumulated danger
e fs: the fun for a given segment

* ag: the danger for a given segment

memo(d, s) = maz(memo(d + 10,5 — 1) * .5, fs + memo(d — a5, s — 1))

The first term of the max represents walking the section. It may seem
counterintuitive that we are ADDING 10 to d. Consider, though, that to
achieve d as our current danger after walking, it must have been 10 MORE
than d on the previous segment, before decreasing during the walking. The
same argument is made for subtracting dangersegment in the second term
representing skiing this segment.

4. Base Cases: The danger values have to be bound by 0 and the maximum
danger.

The runtime matches that of the previous problem (O(sd)), and the code is
also quite similar.

// returns the maxium fun for a given amount of max danger
double[] [] memo;
double fun(int max_d) {

memo = new int[max_d + 1] [segments + 1];

for(int i=0;i<=max_d;i++)Arrays.fill(memo[i], 0);

for (int i=1; i <= segments; i++) for (int j=0; j <= max_d; j++) {
if (j + 10 <= max_d) memo[j][i] = Math.max (memo[j][i],
memo [j+10] [i-1] * .5); // get here by walking
if (j - ali]l >= 0) memo[j][i] = Math.max(memo[j][i], £[i] +
memo [j-alil][i-1]); // get here by skiing
}

return memo [max_d] [segmets];
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6.4.2 Forward-Looking Iteration

In the examples so far, we’ve built our recurrence relation by only looking at
values we’ve previously calculated. As we saw with the skiing problem in the
previous section, this sometimes leads to awkward relations where we have to
think backwards. We can make things slightly easier to reason about by chang-
ing the calculation ever so slightly. Instead of arriving at a cell with all depen-
dent values calculated, when we arrive at a cell, we will ”lock in” the value that
is stored in that cell as the optimal value, and update cells which might depend
on this cell. One might note that this is very similar to how many shortest path
algorithms work. When drawing how the diagram of how the array is populated,
the following changes take place:

e The arrows point upwards and to the right, instead of downwards and to
the left

* Boxes still go from red-;black (simulating holding a known-optimal value)
when we reach them in the iteration, however, no computation takes place
for that box at that time. Computation for that box has already taken
place.

* We update values in boxes that could be affected by our current box

Here is the example of the computation that occurs while processing food 1
from the earlier exercise. Note that row 1 has become black, while row 2 is still
red, despite storing some values already.

4
Foods t
"1

Servings
Here is how the code changes for the skiing example above:

// returns the maxium fun for a given amount of max danger
double[] [] memo;
double fun(int max_d) {

memo = new int[max_d + 1] [segments + 1];

for(int i=0;i<=max_d;i++)Arrays.fill(memo[i], 0);

for (int i=0; i < segments; i++) for (int j=0; j <= max_d; j++) {
int danger_walking = Math.max(0, j-10); // if we walk with less
than 10 danger, it goes to 0, elsewise, j-10
memo [danger_walking] [i+1] = Math.max (memo[danger_walking] [i+1],
memo[j]l[i] * .5); // walking
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if (j + ali]l <= max_d) memo[j+a[i] [i+1] =
Math.max (memo [j+a[i] [i+1]1]1, £[i] + memo[jl1[il); // skiing
}

return memo [max_d] [segmets];

We can see that the code follows much more closely with how we might think
about the problem. Both methods are equally valid in this case, though there
may be some instances where one makes more sense than the other.

6.4.3 Travelling Salesman

Consider the following problem:

Given a weighted graph, determine the shortest path from v —
which visits all nodes.

This is a classical statement of the NP-Complete travelling salesman prob-
lem, for which no known efficient algorithm is known. Some algorithms are more
efficient than others, though!

The typical brute force recursion-with-backtracking solution to this problem
involves recursing on all nodes which haven’t yet been visited, and taking the
one that yields the shortest path. The runtime is O(n!). In each recursive call,
we need to know which node we are at and which nodes have yet to be visited.
Ask yourself this, though: If we know we are at a given node, and we know
which nodes have been visited, does it matter which path we took to get there?
Does the solution for the recursion change? If not, why do we have to compute
it multiple times, we should cache it!

1. Indices: the node we're at and which nodes have already been visited

2. Value: the minimum distance to visit those nodes, ending at the current
node

3. Relation: We'll use a forward looking relation here. Iterate over all pos-
sible mext nodes to see if it yields a better path langth ending at that
node

4. Base Cases: it takes 0 distance to be at the starting node with only that
node visited

We could attempt to write the DP code at this point, but we’d find diffi-
culty when attempting to figure which order to iterate in. Unlike the previous
problems, the recursive relation does not provide an obvious ordering of depen-
dencies. Lets examine the graph with 4 nodes to get an intuitive grasp of where
the dependeencies lie.

Diagram
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We see that the guarantee we need to enforce is that we need to visit entries
in the array which have 1 visited node before those that have 2 visited nodes
before those that have 3 visited nodes, etc. That gives us a few ways to perform
the iteration.

1. Simply resort to the recursive solution with memoization. Then we don’t
have to worry about ordering as the recursion stack takes care of it im-
plicitly.

2. Iterate over all permutations of 1 node visited, 2 nodes visited, 3 nodes
visited, etc. This is correct, but somewhat unwieldy, since we have to com-
pute next permutation for each count of nodes visited as well as iterating
over all the nodes we could be at for that iteration.

3. BFS. We know that the ordering we need requires visiting nodes in order
by distance from the start node, where distance is simply the number of
ndoes on the path. This is equivalent to the ordering in which BFS visits
the array entries. This is far more straightforward to code.

Fortunately, we can reduce this even further. Our above stated requisite
guarantee is a bit too strong. Instead of visiting ALL entries where have fewer
nodes visited, we only have to guarantee we’ve visited each entry whose compos-
ite nodes represent a strict subset of the current entry. To simplify, considering
4 nodes represented a bitmask, the original guarantee meant we had to visit
nodes in the following order (given 0001 as the start node):

1. 0001
2. 0011
3. 0101
4. 1001
5. 0111
6. 1011
7. 1101
8. 1111

Intuitively, there is no reason to have to visit 1001 before 0111, since other
than the start node, they share no common visited nodes. This represents the
relaxation of the guarantee. Given the relaxation, the following ordering is also
valid:

1. 0001
2. 0011
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0101
0111
1001
1011
1101

® N e o e W

1111

It’s easy to see that each node only depends on ones that have come previously,
and more importantly, the entries now go in numerical order. It’s easy to prove
that we can always just iterate through the nodes in numerical order and still
be correct. For a given entry, each state we could possibly visit has exactly
one more visited node, and thus exactly one more 1 bit in its representation.
Changing a bit from 0 to 1 in a binary number necessarily makes it bigger. QED.
We can therefore just iterate over all valid states of nodes visited in numerical
order, and then which node we are at for that state.

// returns the TSP solution starting at O and ending at adj_mat.size
int[][] memo;
int tsp(int[]1[] adj_mat) {
memo = new int[1 << (adj_mat.length - 1)][adj_mat.lengthl; //
2"°nodes since we need all combinations, and then which node
we’re at
for(int i=0;i<=max_d;i++)Arrays.fill(memo[i], Integer.MAX_VALUE);
memo [1] [0] = O; // distance to start node with only start node
visited is 0. Everything else is infinite

for (int i = 1; i < memo.length) for (int j=0; j < memo[0].length;
j++) if (memo[i][j] != Integer .MAX_VALUE) { // iterate over all
entries in numerical order, then all nodes we could be at. skip
unreachable nodes
for (int k = 0; k < memo[0].length; k++) if (i & (1 << k) == 0 &&
adj_mat[j][k] != Integer.MAX_VALUE) { // iterate over each next
node (this is a forward looking DP), skip if we already visited
this node or no edge between j and k
int next_state = i | (1 << k); // the next state is this state,
but with the 1 extra bit added for visiting k
memo [next_state] [k] = Math.min(memo [next_state] [k], memo[i] [j] +
adj_mat[jl[k]); // update distance to next node if better
}
}

return memo [memo.length - 1] [adj_math.length - 1]; // return entry
with all nodes visited ending at last node
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In the code, we can see the size of the memo matrix is n*2™, and since we do
an iteration over m nodes in the inner loop (iterating over k as the next node),
the overall runtime is O(n? * 27).

6.4.4 Prefix Sum
Consider the following problem:

Given an array A of numbers and an index ¢, what is the sum of
Alj], where 5 < 4?

This is known as a prefix sum (sum of all the numbers which are a prefix of ),
The naive algorithm is to simply walk the array from 0 to ¢ and compute the
sum. This is the best we can do for a single query, but very inefficient if we have
multiple queries. As with previous problems, we can see why this is wasteful. If
we compute A[4], and then get a query for A[5], we have to recompute A[4] as
part of computing A[5], so we might as well just save it. The DP follows simply
as a sequential computation of each 1.

// generates prefix sum array
int[] memo
void ps(int[] A) {
memo [0] = A[O0];
for(int i=1; i<A.length; i++) memo[i]=memo[i-1]+A[i];

}

We can now compute all the prefix sums in linear time, and all subsequent
lookups are constant.

6.4.5 Inclusion/Exclusion
Consider the following problem:

We have an n x n grid. On that grid there are m special points.
Given a query of (z1,¥1), (Z2,¥2), return the number of special points
which are contained in the box bounded at the upper left by the first
point, and the lower right by the second (inclusive).

There are a couple of solutions which are simply, yet inefficient:

e Walk each of the m points to see if it is contained by the bonding box.
O(m) for each query.

* Create a hash set of the special points. Walk each 21 < z < z2,y1 <y <
y2 and see if the set contains that point. O(n?) for each query.

There are some optimizations which may help in some cases, such as sorting
the points, or collapsing the grid to only container rows or columns which contain
special points, none avoid the fact that each query depends either on m or n.
To help us figure this one, lets simplify the problem slightly:
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Given a query of (z,y) return the number of special points
contained in the box bounded by (0,0) and the given point.

We could use the same naive algorithms as above, but run into the same
issues. Thinking of the duplicate work, we see that a query of (4,4) followed by
a query of (5,5) would require recomputing the (4, 4) solution. This is wasteful
and sounds very much like the repeat computation we saw in prefix sum. The
challenge becomes how to modify the recursive relation.

Given a memo array populated with the number of special points
contained between (0,0) and (n,m) for all n < tandm < 4, how can
we compute memoli][i]?

Diagram

We see that based on the data we have, we can lookup memoli-1][i] and
memoli][i-1]. The issue here is the overlap. We can solve that problem by then
subtracting memoli-1][i-1], since it would otherwise be included twice. The final
piece of the puzzle is to check if (4,4) is a special point and add 1. The code
looks as follows

// generates an array on the count of special points <= 1i,j
int[][] memo
void special(int n, HashSet<Point> special} {
memo=new int[n+2] [n+2]; //we size this larger than usual so we don’t
run off the end of the array when evaluating x or y == 0. Also
means we need to shift everything by 1 elsewhere
for(int i=1;i<=n;i++)for(intj=1;j<=n;j++){
memo [i] [j]=memo[i-1] [j]+memo [i] [j-1]-memo[i-1] [j-1];
if (special.contains(new Point(i-1,j-1))memo[i] [jI1++; // we
subtract 1 in the special lookup because the whole array is
offset by 1 so we don’t run off the end of the array

To understand why we shift the array by 1 in each direction, consider what
we need to populate in the rows where i or j == 0. We’d either need to special
case populate that row and column, or we could have a dummy ”-1” row which
is initialized to 0 so the relation looks the same as the rest of the array. Diagram

Since we can’t index -1, we shift the array so the entire thing is offset by
1. This means when we’re looking at memo[1][1], we’re really looking at point
[0][0]. This explains why we substract 1 before our lookup into the special set.

Now that we have the solution for our simplified problem, we can extend it
to the original problem using the same method of inclusion and exclusion we
used in the DP computation. Diagram

We can see we add the large box bounded by the second point and (0,0),
then subtract off the two boxes on the side and top, then have to add back in
the smaller box since we substracted it twice.
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int count(int[][] memo, Point first, Point second) {
return memo [second.x] [second.y] - memo[second.x] [first.y] -
memo [first.x] [second.y] + memo[first.x] [first.y];

The DP calculation is O(n?), but each subsequent lookup is O(1). We can
use the interesting points optimization below to decrease the bounds further
when m << n.

6.4.6 Mini-Max
Consider the following problem:

Alice and Bob are playing a game. Laid out before them is a deck
of n cards, each with a distinct integer between 1 and n inclusive.
The cards are laid out in a row in random order. Alice goes first
and selects the card on either end of the row, adding it to her total.
Then bob does the same. They alternate turns until all cards are
taken. Each player is trying to ensure their total exceeds the other’s
by as much as possible. Assuming each play optimally, what is the
value of alice’s score minus bob’s?

If n were small, we could simply evaluate all possible choices recursively.
Unfortunately, n probably isn’t small. Greedy solutions may seem promising,
but we can imagine possibilities where early decisions may have adverse impli-
cations later on (suppose Alice can do well by taking high cards off one side,
but later on, it leaves Bob to take an extremely highly valued card). Since we
can’t factor all possible implications into a greedy heuristic, this probably isn’t
promising. So instead we examine where we might be doing repeat work in a
greedy solution. Imagine a case where Alice selects a card on the left, then Bob
selects a card on the right. We now have an array from 1 to n—1. Is the solution
to that subproblem any different than were Alice to have selected the card from
the right and bob from the left? Do we need to evaluate it again? Surely not.
This leads us close to a DP solution.

1. Indices: We need to know the range of the array, but we also need to
know whose turn it is, since each player is optimizing for themselves. The
left hand index will be inclusive, and the right hand exclusive. This helps
ensure the difference between the two indices represents the number of
cards remaining (and matches things like String.subString).

2. Value: This one is a bit tricky. How do we encode both players scores?
Each is trying to maximize their difference to the other players score.
We can reduce this to simply storing Alice’s score minus Bob’s, and on
Alice’s turn, we will attempt to maximize thie value, and on Bob’s, we
will attempt to minimize it.
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3. Relation: on Alice’s turn, with cards ¢ — j remaining, memoli][j][alice] =
max(memoli+1][j][bob] + cardl[i], memoli][j-1][bob] + card[j-1]). We can
either select the left or right hand card. Bob’s relation is similar, except
we want the minimum, and we subtract the card value (since we’re storing
the difference to Alice’s score). Note that we use j-1 since the right hand
side of the range is exclusive. When it’s bob’s turn, we subtract our chosen
card value and try to minimize instead.

4. Base Cases: memoli][i] = 0.

The iteration order is slightly tricky here. Note that in our recursive relation,
we’re not decreasing or increasing any of the indices, instead we’re decreasing
the difference between i and j, namely, the number of cards remaining. This
means we have to iterate from 0 cards remaining through n.

The code follows nicely:

int game(int[] card) {
int[J[1[] memo=new int[card.length+1] [card.length+1][2]; // we’ll
say 0 == alice, 1==bob.
for(int i=0;i<card.length;i++)for (int j=0;j<2;j++)memo[i] [i] [j]=0;
// if no cards left, no difference!
for(int size=1;size<=n;size++)for (int
start=0;start<n;start++)for(int player=0;player<2;player++){
if (player == 0) { //alice
// we try to maximize, and our third index is O because we’re
evaluating alice. Either take the first or last card of the
segment and
// add it to bob’s optimal difference of the remaining cards
memo [start] [start+size] [0] =
Math.max (memo [start+1] [start+size] [1] + card[start],
memo [start] [start+size-1] [1] + card[start+size-1]);
} else { // bob
// we try to minimize, so the card we select is subtracted from
our total. Note that we have swapped the third index in each
case.
memo [start] [start+size] [1] =
Math.min(memo [start+1] [start+size] [0] - card[start],
memo [start] [start+size-1] [0] - card[start+size-1]);
}
}

return memo [0] [card.length] [0]; // optimal solution with whole array
when we have all the cards and it’s alice’s turn

Since the array is n X n, and we do constant work for each entry, the total
runtime is O(n?).
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Simplifying

To make the code more concise, we can eliminate the third DP index and for
loop, saving both memory and code size. If we assume every entry in our DP
array is implicitly representing Alice’s turn, it means our recursive relation can
only refer to values when it’s alice’s turn. To do this, we expand our relation to
encompass 4 possibilities instead of just 2:

1. Alice takes the left card and then Bob takes the right
2. Alice takes the left card and Bob takes the new left card
3. Alice takes the right card and Bob takes the left

4. Alice takes the right card and Bob takes the new right card

The simplified code looks like this (Note that we have to add a base case for
if there’s only 1 card left or we could simulate bob taking cards which aren’t
there!):

int game(int[] card) {
int[] [] memo=new int[card.length+1] [card.length+1];
for(int i=0;i<card.length;i++)memo[i] [i]=0;
for(int i=0;i<card.lenght;i++)memo[i] [i+1]=card[i]; // extra base
case
for(int size=1;size<=n;size++)for (int start=0;start<n;start++){
memo [start] [start+size] = Math.max(card[start] +
Math.min(memo [start+2] [start+size] - card[start+1], // alice
left, bob left
memo [start+1] [start+size-1] -
card[start+size-1]), // alice left, bob right
card[start+size-1] +
Math.min(memo [start+1] [start+size-1] - card[start],
// alice right, bob left
memo [start] [start+size-2] -
card[start+size-2])); // alice right, bob
right
}

return memo [0] [card.length];

Even though we’ve halved our memory, the runtime is not faster, even by a
constant, since are doing twice as much work for ecah entry, but there are half
as many. We have made the code a bit more concise, though. The nature of
taking the maximum of the subsequent minima is where the name Mini-Max
comes from.

Simple Game Victor

Consider the following simplification of the problem:
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Each card laid out in the row, instead of having a number, is
either red or blue. As the players alternate taking turns, Alice at-
tempts to collect the rded cards. If when all the cards have been
collected, Alice has all the red cards, she wins, otherwise Bob does.
Assuming optimal play, who will win?

It turns out this is simply a binary version of the above problem. Instead of
having to worry about totals and differences, we simply have to store whether
a state results in a win for Alice. When he makes a move, obviously Bob is not
going to move to a state which results in a win for Alice (since we know she
plays perfectly). So for Bob to lose, BOTH of the moves he could make must be
losing. When it’s Alice’s turn, if either of her possible moves force Bob to make
a losing move, she wins. When viewed as a binary where a 1 represents a win
for Alice, and 0, a loss for Alice, Bob is taking the minimum of the two resulting
moves, and Alice is taking the maximum. The following two rules follow.

e Alice wins if one of her moves leads to a loss for Bob. (Maximum of her
two potential moves)

* Bob loses if BOTH of his moves lead to a win for Alice. (If either of his
two potential moves is a 0, he takes it, so a minimum)

bool[][] winning_alice;
bool game(bool[] red_card) {
winning_alice=new bool[card.length+1] [card.length+1];
for(int i=0;i<card.length;i++)winning_alice[i] [i]=true; // alice
wins if no cards
for(int i=0;i<card.lenght;i++)winning_alice[i] [i+1]=true; // alice
also wins if just 1 card
for(int size=1;size<=n;size++)for (int start=0;start<n;start++)
winning_alice[start] [start+size] = losing_bob(red_card,
start+1,size-1) || losing_bob(red_card,start,size-1); // alice
wins if either of her moves causes a loss for bob
return winning_alice[0] [card.length];

}

bool losing_bob(bool[] red_card,int start,int size){
if (red_card(start)) return false; // base cases. Bob doesn’t lose
if he can take a red card
if (red_card(start+size-1) return false;
return winning_alice[start+1] [start+size] &&
winning_alice[start+1] [start+size]; // both blue cards, he loses
if both moves winning for alice

This strategy applies to many types of game theory problems where the
players alternate turns.
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6.4.7 Expected Value

Consider the following problem:

Tim likes going shopping. He walks up and down the storefronts
and stops to look at the items. Sometimes pick-pockets stand out-
side the stores, and when Tim stops, they steal some amount of his
remaining money. Given the probability of Tim getting robbed out-
side each store, what is the expected amount of money he has after
looking at items at each store (Tim is on in trouble with his spouse
so will not purchase anything today, only potentially get robbed).
The probabilities of getting robbed outside any pair of stores are
independent, and Tim walks past each store in order and only once.
Tim is guaranteed to have enough money to not run out even if he
is very unlucky and is robbed at every store.

Given we have two options at each store, get robbed or don’t get robbed,
and we can calculate the expected value on a store-by-store basis (Since the
probabilities are independent!), we should be able to formulate a 1-dimension
DP, similar to fibonacci:

1. Indices: Since we walk by the stores in order, it’s a very strong hint that’s
our index.

2. Value: The expected amount of money we have after visiting each store.

3. Relation: Unlike our previous DPs, we don’t take the max of potential
values, but simply apply the expected value definition over all possibilities.
Assuming p; is the probability of getting robbed outside the i-th store,
and a; is the amount taken there, then by definition of expected value
memo(i) = p; * (memo(i — 1) — a;)) + (1 — p;) * (memo(s — 1)). We either
get robbed or don’t.

4. Base Cases: memo(—1) = starting-money Note that since our base case is
out of bounds, we’ll have to shift the index into the memo array by 1.

double money(int[] a, double[] p, int starting_money){

double[] memo = new doublela.length+1]; // allocate one extra entry
since the indices are shifted by 1

memo [0]=starting_money; // base case

for (int i=0;i<a.length;i++)memo[i+1]=p[i]*(memo[i]l-a[i]) +
(1-pl[il)*(memo[i]); //iterate through the array and apply
relation

return memo[a.length];
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Application to other DP types

While in this case, the application of the expected value is straightforward,
it can also be applied to some of the standard DPs we have seen previously.
Consider the following modification:

Time really wants to purchase some gifts for his spouse. At each
shop, he can stop and purchase a gift worth some amount. If he
stops, however, his probability of getting robbed incrases to some
heightened value. Assuming bob wants to buy at least g gifts for his
spouse (he is cheap so doesn’t care which ones he buys so long as be
has g of them!), what is his maximum amount of expected amount
of remaining money? Tim is smart so has enough money to deal
with getting robbed at every store while buying any combination of
three gifts.

You may note some similarities to a previous class of problems.

1. There are two variables, each of which we are trying to maximize or min-
imize

2. There are multiple classes of items, each contributing varying amounts to
the two variables.

3. We can choose to take or not take some of each item

If you recognized this as a knapsack without repeats, you are correct. We
have our two variables, money and gifts, and we are trying to maximize our
money while minimizing the the amount of gifts we have left to buy. At each
store we can choose to buy or not, and this affects are gifts or money with some
probability.

1. Indices: As with before, which store we are on is one of our indices. Also,
one of the things we’re trying to optimize. In this case it must be the
number of gifts left to buy.

2. Value: The expected amount of money we have for a given store and
number of gifts left to buy

3. Relation: The relation looks very similar to the previous knapsack, except
in each case, we apply the definition of expected value before selecting the
maximum. The cost of each gift is ¢; and the probability of getting robbed
if a purchase is made is ¢;. Note that gift represents gifts remaining to
buy, and this is a backwards looking dp, so we use gift + 1 to represent
having one MORE gift left to buy when we were at the previous store.

p; * (memo(store-1, gift) — a;)
1—p; tore-1, gift don’t b ift
memo(store, gift) = max (1 = pi) * (memofs .ore gift)) ot bty a8l
g; * (memo(store-1, gift + 1) — ¢; — a;))

+(1 — ¢;) * (memo(store-1, gift + 1) — ¢;) bought the gift
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4. Base Cases: memo(0,g) = starting,oney. Note that we’ll have to shift
the indices by 1 to account for this base case. There is a caveat here.
We need to encode that memo(0,0 <= i < g) are unreachable states,
otherwise it will mess up our calculations. We can simply catch this in
the relation and not allow us to consider values which are impossible (such
as after store 1, having fewer than g — 1 gifts left to buy).

double money(int starting_money, int g, int[] c, int[] a, double[] p,
double[] g@){
double[] [] memo=new doublela.length+1] [g+1];
memo [0] [g] = starting_money;
for(int store=0;store<a.length;store++)for(int
g_left=0;g_left<=g;g_left++){
memo [store] [g_left] = q[i] * (memo[store-1][g_left+1]-c[i]-al[i]) +
(1-q[i])*(memo [store-1] [g_left+1]-c[i]); // bought the gift
if (g-g_left > store) { // can only get here while NOT buying gift if
we’ve visited enough stores already. For instance at store 1, if
we’ve bought 1 gift, we HAD to have bought it at this state.
memo [store] [g_left] = Math.max(memo[store] [g_left], p[i] *
(memo [store-1] [g_left]-ali]) +
(1-p[il)*memo [store-1] [g_left+1]; // didn’t buy the gift
}
}

return memo[a.length] [0];

Similarly to how we applied probability to knapsack, it could potentially be
applied to other problem types such as travelling salesman or game-theory. In
our recursive relation, we just have to know that instead of choosing one option
or the other, we have to calculate the expected value of choosing one or the
other.

6.4.8 Grid Tiling
Consider the following problem:

You have a pack of 1 x 2 tiles and a 3 X n sized grid. How many
ways are there to completely tile the grid?

While not necessarily common, this type of problem comes up often enough
to warrant discussion. The characteristics of these problems are a small number
of small, fixed shape tiles, and a grid which is relatively small in one dimension
and unbounded in the other. While we may try to recursively enumerate all
possible combinations, we find this is too slow. We can see the repeat work.
Consider the two following arrangements of the first few tiles:

Diagram

The placement of the dominoes yielded a smaller grid which will have the
same number of ways to tile regardless of which of the two initial tilings we
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chose. There is no reason to evaluate it again. This makes it clear that one of
the DP states will have to do with how far we have progressed down the grid.
The remaining x-space we have to fill can’t be the ONLY state, however, as
consider the following intermediate state How would we encode this?

Diagram

Along with how far we are along the grid, can we encode the shape of the
boundary in a concise enough way to be viable? We note that since the tiles are
at most 2 wide, if we place them in order from left to right, we can always do so
in such a way that the difference between the left-most point on the boundary
and the rightmost point is at most 1.

Diagram

Since the boundary is only 1-wide, we can encode any boundary shape using
a bitmask, with a 1 representing the precense of a tile, and 0 indicating the
space is uncovered. This means we have a very limited number of shapes that
the boundary can take, namely 2™. Those possibilities are enumerated here
along with their binary representation.

Diagram

We now have the workings of a DP solution.

1. Indices: The shape of the boundary, encoded in binary, along with the
index of the left-most uncovered square on the grid.

2. Value: the number of possible ways to arrive at the boundary encoded by
the location and shape

3. Relation: This is tricky. While it might seem promising to place 1 tile a
time, this leads to issues as soon as we try to place the first horizontal
domino: Diagram As soon as it is placed, the boundary spans two columns
instead of just 1, and we have no way to account for this in our DP table.
To avoid this problem, we have to simultaneously place all the dominoes
which complete the row we’re on. In the horizontal domino case, this leaves
us with 2 other possibilties, each of which results in a valid boundary:
Diagram So the relation is as follows: Given a boundary, enumerate over
all possible ways to complete the row, and add the number of ways to
reach our current state to the state that particular completion leads to.

4. Base Cases: There are 1 way to tile an empty grid
Let’s look at all possible boundaries and how we can complete the row.
= 000

— HV: Update 001 in next column
— HHH: update 000 two columns over
— VH: update 100 in next column

* 001

— HH: update 110 in next column
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— V: update 000 in next column
« 010

— HH: update 101 in next column
« 011

— H: update 100 in next column
* 100

— HH: update 011 in next column

— V: update 000 in next column
e 101

— H: update 010 in next column
* 110

— H: update 001 in next column

111: This is not really an item, since it would be 000 in the next column.

While we could have written code to enumerate each of these possibilities,
most times the number of cases is small enough to not be necessary.! Here we
have only 10 specific cases. we’ll write code for each.

long tile(int n) { // often times need a long since the count grows
exponentially
long[] [] memo=new long[n+1][8]; // 8 possible shapes in n locations
memo [0] [0]=1; // base case
for(int i=0;i<n;i++){
if (i<n-1){ //can’t evaluate H cases when only 1 column available

memo [i+1] [1] += memo[i] [0]; // 000+HV = 001
memo [1+2] [0] += memo[i] [0]; // 000+HHH = 000
memo [i+1] [4] += memo[i] [0]; // 000+HV = 100
memo [i+1] [6] += memo[i][1]; // 001+HH = 110
memo [i+1] [6] += memo[i][2]; // 010+HH = 101
memo [1+1] [4] += memo[i] [3]; // 011+H = 100
memo [i+1] [3] += memo[i][4]; // 100+HH = 011
memo [i+1] [2] += memo[i] [5]; // 101+H = 010
memo [1+1] [1] += memo[i][6]; // 110+H = 001

}

memo [i+1] [0] += memo[i][1]; // 001+V = 000

memo [i+1] [0] += memo[i] [4]; // 100+V = 000

}

retrun memo[n] [0];

la particularly mean problem writer may require this someday!
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So long as the vertical dimension is small enough, the runtime will be rea-
sonable. If m is the vertical dimension, the size of the array is O(n x 2™). The
Number of possible tilings of a single row is also exponential in m, leading to a
total runtime of very roughly O(n x 4™). This runtime demonstrates why the
vertical dimension must be very small.

6.5 Optimizations

With an understanding of the types of problems we can solve with dynamic
programming, we can now look at some tricks to speed it up when the ’obvious’
solution is not sufficient.

6.5.1 Memory Reduction

Suppose you are working on a problem similar to the skiing problem above and
get a runtime error, though are sure your code doesn’t have any invalid array
access, bad input reads, or anything of the like. It’s quite possible depending
on the input size, that you could have run out of memory! This is an easy fix,
though. If we look at our recursive relation, we see that we only ever depend
on values 1 segment previous. For a given segment, once we’ve reached the
segment after next, we never refer to the segment again. This is clear from the
drawn dependency diagrams which show the arrows only ever going back 1 row
or column.

The optimation is simply to only allocate two segments worth of data at
a time, representing the previous segment and the current segment. Once we
progress to the following segment, we discard the original segment, meaning we
only ever hold on to 2 segments worth of data. This makes our memory usage
independent of the number of segments, instead of scaling linearly with it. The
code is modified as follows:

// returns the maxium fun for a given amount of max danger
int fun(int max_d) {
int[] current = new int[max_d + 1];
for (int i=1; i <= segments; i++) for (int j=0; j <= max_d; j++) {
int[] next = new int[max_d+1]; // allocate the column we’re about to
populate
if (j + 10 <= max_d) next[j] = Math.max(next[j], current[j+10] *
.5); // get here by walking
if (j - ali] >= 0) next[j] = Math.max(next[jl, f[i] +
current[j-alill); // get here by skiing
current = next; // we’re done with current. point it to the new data,
allowing the old to be freed
}

return current[max_d];
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We can get some additional constant speedup by swapping the arrays in-
stead of allocating/freeing/initializing them each time, but usually this is not
necessary.

This technique can be applied to any solution for which we can limit how
far back we look in the DP array. In fibonacci, for example, we can discard any
number more than 2 previous, since it will never get used again.

6.5.2 Dimension Swapping

Lets remember back to our earlier buffet problem with item limits. We sook to
evaluate the maximum happiness H attainable with I items and S servings. Our
solution involved a I x S array which stored values of H. This O(I *.S) solution
is often optimal and sufficient. Consider, though, if § >> H. Our runtime will
be large (since it depends on S), though in our array, we are storing a relatively
small number of unique values for H.

We can do something about that by taking the dual of the problem. Instead
of considering the maximum happiness that can be attained for a given number
of servings, instead consider the minimum number of servings that are needed
to attain a given amount of happiness. If we could do such a thing, we’d reduce
our runtime to O(I * H), which based on our supposition that S >> H must
be much better.

1. Indices:

(a) The amount of happiness we’ve obtained

(b) The index of the food we’re currently standing in front of (we’ve
already evaluated those with index less than that, and will never
evaluate them again per the new restriction). It is a good rule of

thumb that any time we go in some order, such as by time, or food
order, it will be an index of the DP.

2. Value: The minimum amount of servings required to obtain the given
happiness

3. Relation: For a given food, we either eat it or not, as before, except we
calculate the amount of happiness we need to be at, and use that to look
up the minimum servings in the table.

memo(¢ — 1,h + H;) eat this item

memo(i — 1, h) don’t eat this item

memo(Z, h) = min {

4. Base Cases: Same as before, we can’t evaluate outside the bounds of the
array

There are two tricks in the conversion from one problem to the other:
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1. We have to figure out how large to make the h dimension of our array. It
must be big enough to hold the largest happiness we could possible get.
The simplest way to do this is to bound it by the sum of the happiness of
all the items. That way in the 'worst case’ if we eat every item, the array
can still hold it.

2. We still have to return the maximum happiness for a given number of
servings. To do this, we simply iterate over the last column of the DP
array, examining any entry that has fewer than the requisite servings and
return the one with the highest happiness.

// returns the maxium happiness for S servings

int happy(int[] S, int[] H, int[] Q, int serving_limit) {
// calculate the bounds on H
int sum=0;
for(int i=0;i<H.length;i++)sum+=H[i]*Q[i];

memo = new int[food_types + 1] [sum+1];

for (int i=0; i < food_types; i++) for (int j=0; j <= sum; j++) { //
loop over all food types, and for each food type, check every
possible happiness amount

memo [i+1] [jl=memo[i] [j]; // don’t eat the food

if (j>=H[i]*Q[i])memo [i+1] [j1=Math.min(memo [i+1] [j],
memo [1] [j-H[11*Q[i1]); // if we could have eaten the food, check
if it’s fewer servings

}

// compute maximum H bound by the serving limit

int maxh=0;

for(int i=0;i<=sum;i++)if (memo[Q.length] [i] <=
serving_limit)maxh=Math.max(maxh,i);

return maxh;

Remember this optimization for knapsack-like problems where one of the
values we’re trying to optimize is significantly greater than the other.

6.5.3 Interesting Points

Think back to the inclusion/exclusion problem. Our DP solution involved com-
puting first the number of points between (z,y) and the origin. Consider,
though, if our grid size n X n is significantly greater than the number of points
m. Our array is sized to the grid, giving us an O(n?) runtime. Consider when
the values in our DP array change:

Diagram

We see that the elements only ever change when we reach a special point.
As such, most of the work is wasted. We can instead ”collapse” the grid such
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that every row and column has a point in it. This reduces the grid, and thus
our runtime to O(m?).
TODO fix this code and add diagram

// generates an array on the count of special points <= i, j
int[J[] memo
void special(int n, HashSet<Point> special} {
memo=new int[n+2] [n+2]; //we size this larger than usual so we don’t
run off the end of the array when evaluating x or y == 0. Also
means we need to shift everything by 1 elsewhere
for(int i=1;i<=n;i++)for(intj=1;j<=n;j++){
memo [i] [j]1=memo[i-1] [j]+memo[i] [j-1]-memo[i-1] [j-1];
if (special.contains(new Point(i-1,j-1))memo[i] [j1++; // we
subtract 1 in the special lookup because the whole array is
offset by 1 so we don’t run off the end of the array

6.5.4 Dimension Elimination

Consider the following problem:

We have a group of people standing in a line. Each pair of people
has a known friendship value which indicates how much those people
like eachother. We wish to partition the line into m groups, with
groups comprising some number of consecutive people in line. The
friendship value of a group is defined as the pairwise sum of the
friendship value of the members of a group. We wish to maximize
the sum of the friendship values of the groups.

6.5.5 Restricted Search
6.5.6 Knuth’s Optimization
6.5.7 Convex-Hull Optimization

6.6 Identifying DP

While it’s been touched on throughout this chapter, here are some hints that a
problem might be DP:

e It seems to share something in common with some of the standard DP
problems above

* Brute force solutions are too slow, but there is no greedy heuristic

e Trying to come up with a greedy solution yields seemingly never-ending
edge cases
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e There is repeat work being done somewhere, where the repeated work is
independent of the work it took to get there

Even if you think a problem might not be DP, it is useful to look at the
input bounds, and see which combination of those inputs might yield a runtime
which is fast enough. This is often enough to ponder if those inputs might form
the indices of a DP state.
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