
6.4.9 Digit DP

Consider the following problem:

How many numbers in the range [a, b] where 1 ≤ a ≤ b ≤ 1015−1
contain exactly five 5’s?90

While there may be combinatorial methods, we look at more flexible enu-
merative way. We can’t directly check all numbers in the range, but techniques
enable us to examine possible solutions one digit at a time. In order to under-
stand how to do this, we will solve slightly easier problems:

1. How many numbers exist between 1 and 1015 − 1?

2. How many numbers exist between 1 and any fixed b < 1015?

3. How many numbers exist between 1 and some fixed b which have a specific
number of 5’s in their decimal representation?

Counting Integers We trust readers can successfully determine how many
integers exist between 1 and 1015 − 1,91 however consider how we can compute
this programmatically. Consider what possibilities we have for each digit: any
of the 15 places in the number can take any value from 0-9. If we knew of no
other way, we could build a basic DP to count the number of ways to construct
a 15-digit number, one digit at a time.

1. Indices: The index of the digit we are examining (ones, tens, hundres,
etc.).

2. Value: The count of unique numbers we can make using that many digits.

3. Relation: If we can construct dpi unique numbers of length i, then for
every possible digit in the i+ 1-th position, we add dpi to dpi+1.

92

4. Iteration order: We increase the number of digits, from 0 to 15.

5. Base Case: There is 1 way to make a number of length 0.

ll dp[16]={};

dp[0]=1;

for(int i=0;i<16;i++){

for(int next_digit=0;next_digit<=9;next_digit++){

dp[i+1]+=dp[i];

}

}

//there are dp[i] ways to make an integer of length i

90base 10
91If not, there are 1015 − 1 integers between 1 and 1015 − 1
92If one works it out, as there are 10 possible digits at each place, we end up with dpi+1 =

10 ∗ dpi

307

From an implementation standpoint, note the above code actually counts
000...0, which can be accounted for trivially if necessary by subtracting 1 from
the solution if necessary.

Adding Upper Bounds The simplicity of the above method was possible
since all numbers of length 15 are admissible. If we wish to only count up
to some other target, say 6785, it doesn’t apply, invalidating the DP setup.
Instead, think about what digits are valid when attempting to enumerate all
positive integers up to 6785 (inclusive):

• All digits up to 6 are valid at the first position. (e.g. 5XXX)

• All digits up to 7 are valid at the second position (e.g. 67XX), but so are
8 and 9 if the first digit was a 5 or lower (e.g. 59XX is valid, but 69XX is
not).

• All digits up to 8 are valid at the third position (e.g. 678X), but so 9 if
the first digit was a 5 or lower or the second digit was 6 or lower.

• All digits up to 5 are valid at the third position (e.g. 6784), but so are
digits from 6-9, but only if one of the first three digits was lower than the
target.

This ultimately leaves us with two general states:

1. We can always use any digit up to the target digit at a given place.

2. We can use digits above the target, but only if some earlier digit was less
than its target.

We now have a clean extension to our DP by extending our state to include
whether or not we have seen some digit that is less than its target.

1. Indices: The index of the digit we are examining (e.g. ones, tens, hundres,
etc.) and whether we have seen some more-significant digit which is less
than its target.

2. Value: The count of prefixes of valid numbers (i.e. numbers which are less
than the target), up to so many places.93

3. Relation: We extend the valid prefixes by one digit. If we have seen some
digit which was less than its target, all digits are valid, otherwise only
those up to the target are. If the digit we select is less than the target at
this place, we encode that information in the proper index.

4. Iteration order: We increase the number of digits.

93We must go most significant to least in order to track whether we have seen a more
significant digit less than its target. Therefore the output is really the count of prefixes than
the numbers themselves. For the example, after the first digit, we would have prefixes of
0XXX, 1XXX, 2XXX, 3XXX, 4XXX, 5XXX, and 6XXX, so 6 total prefixes of length 1.

308

5. Base Case: There is 1 way to make a number of length 0 without having
seen a digit less than its target.

In order to implement this without worrying about the limits of integer size,
we assume our target is stored in a string.

//assume upper bounds stored in string "high"

//this is our "target"

//place index and whether we’ve seen a digit lower than

//the target at any more significant place

ll dp[high.length()+1][2]={};

dp[0][0]=1; //base case

for(int i=0;i<high.length();i++){

for(int under=0;under<2;under++){

int low_digit=0;

//the highest digit at this place is 9 if we have seen some

//number lower than its target already, or the digit

//at the right place in the target itself otherwise

int high_digit=under?9:(high[i]-’0’);

for(int next_digit=low_digit;next_digit<=high_digit;next_digit++){

//the under value stays the same, unless our new digit is

//under its target, in which case we set the under flag

bool next_under=under||next_digit<(high[i]-’0’);

dp[i+1][next_under?1:0]+=dp[i][under];

}

}

}

//there are dp[i][0]+d[i][1] ways to make a prefix with length i,

//including numbers with leading 0’s (e.g. 000XX)

As earlier the code actually counts 000...0, which can be accounted for triv-
ially if necessary by subtracting 1 from the solution.

Counting Digits With our ability to enumerate all numbers up to a given
maximum by going digit by digit, it is a small leap to add the number of 5’s we
have seen to our state.

1. Indices: The index of the digit we are examining (e.g. ones, tens, hundres,
etc.), whether we have seen some more-significant digit which is less than
its target, and the count of 5’s we have included.

2. Value: The count of prefixes to valid numbers (i.e. numbers which are less
than the target) up to so many places, which include exactly some count
of 5’s.

3. Relation: We extend the valid prefixes by one digit. If we have seen some
digit which was less than its target, all digits are valid, otherwise only

309

those up to the target are. If the digit we select is less than the target at
this place, we encode that information in the proper index. If the digit we
select is a 5, we also encode the proper index.

4. Iteration order: We increase the number of digits.

5. Base Case: There is 1 way to make a number of length 0 without having
seen a digit less than its target or any 5’s.

In this implementation, due to the tracking of all the variations of 5’s, there
will be a significant number of invalid states (such as having 3 5’s when we have
only seen 2 digits). To avoid doing unnecessary work, we add an extra check to
skip processing states by skipping processing if their count is 0.

//assume upper bounds stored in string "high"

//place index and whether we’ve seen a digit lower than

//the target at any more significant place...and the

//number of 5’s we’ve seen at any previous place

ll dp[high.length()+1][2][high.length()+1]={};

dp[0][0][0]=1; //base case

for(int i=0;i<high.length();i++){

for(int under=0;under<2;under++){

for(int num_fives=0;num_fives<=high.length();num_fives++){

//skip any entries which are 0

if(!dp[i][under][num_fives])continue;

//find the bounds of the digit at this place

int low_digit=0;

int high_digit=under?9:(high[i]-’0’);

for(int next_digit=low_digit;next_digit<=high_digit;next_digit++){

bool next_under=under||next_digit<(high[i]-’0’);

//if this digit is a 5 increase the number of 5’s we’ve seen

int next_num_fives=num_fives+(next_digit==5?1:0);

dp[i+1][next_under?1:0][next_num_fives]+=dp[i][under][num_fives];

}

}

}

}

//there are dp[i][0][5]+d[i][1][5]

//ways to make a number no greater than "high" with exactly 5 5’s.

Lower Bounds Given we have the ability to compute the count of numbers
which have five 5’s and are below some target, we can also compute the count
within some range. A straightforward way could be to run the DP twice, once
at the high end of the range, and once at one less than the low end of the range,

310

and subtract the two.94 In order to avoid unintentionally excluding the lower
endpoint, we could either write a routine to subtract 1 from the lower endpoint
(a subtraction which is difficult if the bounds exceeds common integer types),
or otherwise writing a routine to explicitly check if the lower endpoint matches
the criteria we are looking for (which is at best, extra code). Another option is
to extend the DP by yet another dimension, encoding whether we have seen a
digit higher than the low target, mirroring the one that tracks the upper target.

We note the following about the implementation:

• We pad the ”low” target with zeros to avoid dealing with the differing
string lengths.

• Tracking which dimension is which in the array becomes critical as the
number of dimensions grow.

• If memory consumption is an issue, note the relation only depends on the
immediately preceding digit, and thus can be done with only two ”rows”
rather than storing one for each index.

//assume bounds stored in strings "low" and "high"

//pad low to be at equal length to high

while(low.length()<high.length())low="0"+low;

//place index, seen a digit above the lower target,

//seen a digit below the upper target, and count of 5’s

ll dp[high.length()+1][2][2][high.length()+1]={};

dp[0][0][0][0]=1; //base case

for(int i=0;i<high.length();i++){

for(int over=0;over<2;over++){

for(int under=0;under<2;under++){

for(int num_fives=0;num_fives<=high.length();num_fives++){

if(!dp[i][over][under][num_fives])continue;

//find the bounds of the digit at this place

int low_digit=over?0:(low[i]-’0’);

int high_digit=under?9:(high[i]-’0’);

for(int next_digit=low_digit;

next_digit<=high_digit;

next_digit++){

bool next_over=over||next_digit>(low[i]-’0’);

bool next_under=under||next_digit<(high[i]-’0’);

int next_num_fives=num_fives+(next_digit==5?1:0);

dp[i+1][next_over?1:0][next_under?1:0][next_num_fives]+=

dp[i][over][under][num_fives];

}

}

94As the DP computes up to the target inclusive, if we subtracted the lower bounds exactly,
we would not have included the lower bound in our target inveral.

311

}

}

}

//sum up all dp[high.length()][X][X][5] to get the result

Identifying Digit DP The technique described here can be applied not just
to counting numbers with a certain number of a certain digit, but to any metric
which can be computed one digit at a time. This technique of computing such
counts one digit at a time is called Digit DP.

Typical hints that the technique applies are:

• Counting numbers which have a specific property over a range.

• The endpoints of the range are large, generally in the 1010 to 1020 range,
though this can vary depending on how complex the rest of the dimensions
are.

• The property can be encoded in a small number of states which can be
determined one digit at a time.

6.4.9.1 Expanded Techniques

While techniques such as computing the sum of the digits, or the number of
a specific digit are straightforward, there are other techniques which are more
involved. We cannot cover every possible application here, but illustrate some
common patterns.

Computing Overall Divisibility If a number n is divisible by some d, we
know n (mod d) = 0. How can we compute the modulus digit by digit? For-
tunately, the modulus operator distributes across addition, so 6785 (mod d) =
(6∗1000) (mod d)+(7∗100) (mod d)+(8∗10) (mod d)+(5∗q) (mod d). This
results in a computation which is performed one digit at a time so long as we
the value of the partial sum, (mod d) to our DP state. This adds a dimension
of size d, but once the DP is complete, the count of numbers which are divisible
by d will be stored in the element with a mod of 0.

When implementing, computing the powers of 10 under some modulus (10i

(d))for each entry can be time consuming, and thus should be precomputed.
Some problems require computing the divisibility of the number under multiple
divisors. If possible, it may be faster to compute the results independently with
separate DP runs rather than adding both to the state.95

//assume bounds stored in strings "high"

//place index, seen a digit below target, and mod

95Though this may not always be possible

312

ll dp[high.length()+1][2][MOD]={};

dp[0][0][0]=1; //base case

//precompute (10^i)%MOD

ll pow10mod[high.length()];

for(int i=0;i<high.length();i++)

pow10mod[i]=(ll)pow(10,high.length()-i-1)%MOD;

for(int i=0;i<high.length();i++){

for(int under=0;under<2;under++){

for(int mod=0;mod<MOD;mod++){

if(!dp[i][under][mod])continue;

int high_digit=under?9:(high[i]-’0’);

for(int next_digit=0;next_digit<=high_digit;next_digit++){

bool next_under=under||next_digit<(high[i]-’0’);

dp[i+1][next_under?1:0][(mod+next_digit*pow10mod[i])%MOD]+=

dp[i][under][mod];

}

}

}

}

//sum up all dp[high.length()][X][0] to get the result

Divisibility of Product of Digits In order to determine if the product of
digits is divisble by some number, we could use the same method above (tracking
mods), but this lessens the magnitude of the divisor (low thousands, perhaps).
To go further, consider there are other ways to determine divisibility. At its
core, a number is divisble by another if the multiplicity of any prime factor is
greater in the dividend than the divisor. For example:

360

12
=

23 ∗ 32 ∗ 5
22 ∗ 3

Since there are more 2’s in the numerator than the denominator (3 vs 2)
and more 3’s (2 vs 1), we know for certain 360 is divisible by 12. This means
in order to track the divisibility of the product of the digits going one digit at
a time, we simply need to track the multiplicity of prime factors rather than
the overall modulus. In the end, we can check if the multiplicity is high enough
for all numbers in that class to be divisible by the intended divisor. As every
factor is a single digit,96 the highest prime factor is 7, and we can add all four
potential factors97 as dimensions in the DP. When we have completed the DP,
we can examine states which have seen enough of each of the appropriate factors
to determine the count of numbers which are devisible by the target divisor.

96since we’re taking the product of the digits themselves
972,3,4, and 7

313

For each digit, we compute how many of each prime factor we would con-
tribute to the overall product and use that information to update the appropri-
ate entry in the DP array. For efficiency, we only store the multiplicity of each
factor up to the max required for the divisor98 and therefore must take care not
to overflow any particular dimension once we have hit that maximum.

//twos->sevens store the multiplicity of that prime factor in the divisor

//cache the prime factors of each possible digit

vector<int> pf[10]={{},{},{2},{3},{2,2},{5},{2,3},{7},{2,2,2},{3,3}};

//index, under the high target, factor multiplicity

ll dp[high.size()+1][2][twos+1][threes+1][fives+1][sevens+1]={};

dp[0][0][0][0][0][0]=1; //base case

for(int i=0;i<high.length();i++){

for(int under=0;under<2;under++){

for(int tw=0;tw<=twos;tw++){

for(int th=0;th<=threes;th++){

for(int fi=0;fi<=fives;fi++){

for(int se=0;se<=sevens;se++){

if(!dp[i][under][tw][th][fi][se])continue;

int high_digit=under?9:(high[i]-’0’);

for(int next_digit=0;next_digit<=high_digit;next_digit++){

bool next_under=under||next_digit<(high[i]-’0’);

int next_tw=tw,next_th=th,next_fi=fi,next_se=se;

//walk through factors of next digit, and increase

//the appropriate variable for each one

for(int factor:pf[next_digit]){

if(factor==2)next_tw++;

if(factor==3)next_th++;

if(factor==5)next_fi++;

if(factor==7)next_se++;

}

//never set to higher than what is needed for the

//divisor we’re looking for

next_tw=min(next_tw,twos);

next_th=min(next_th,threes);

next_fi=min(next_fi,fives);

next_se=min(next_se,sevens);

dp[i+1][next_under][next_tw][next_th][next_fi][next_se]+=

dp[i][under][tw][th][fi][se];

}

}

}

}

}

}

}

98since we don’t care about extra factors, only those required to hit the minimum

314

//answer is the sum of over the two entries that have all the factors set

It turns out the above code is not entirely correct. Conisder the number 10,
with a divisor of 3. The above code finds no factors of 3, however 1 ∗ 0 = 0
is trivially divisible by 3. The issue is we have not handled the corner case
were a factor of 0 makes the overall product divisble by any arbitrary divisor.
While it is tempting to simply special case handling of zeros by maxing out all
the factors, this also doesn’t work. Digit DP always places some digit at every
position, including potential leading zeros. If we simply special cased zeros,
we would improperly track ”0011” as divisble by 3 as well, when 11 is not so
divisible.

What we actually need to track is whether the zero appears after some other
non-zero digit. This incurs the introduction of yet another dimension to the DP,
whether we have seen some nonzero digit alreayd. Thus we only max out the
factors on a zero if our state indicates we have already seen such a digit.

Fortunately, this monstrosity is the end of our state explosion and is mostly
correct.

//twos->sevens store the multiplicity of that prime factor in the divisor

//cache the prime factors of each possible digit

vector<int> pf[10]={{},{},{2},{3},{2,2},{5},{2,3},{7},{2,2,2},{3,3}};

//index, under the high target, factor multiplicity, seen non-zero digit

ll dp[high.size()+1][2][twos+1][threes+1][fives+1][sevens+1][2]={};

dp[0][0][0][0][0][0][0]=1; //base case

for(int i=0;i<high.length();i++){

for(int under=0;under<2;under++){

for(int tw=0;tw<=twos;tw++){

for(int th=0;th<=threes;th++){

for(int fi=0;fi<=fives;fi++){

for(int se=0;se<=sevens;se++){

for(int nz_seen=0;nz_seen<2;nz_seen++){

if(!dp[i][under][tw][th][fi][se][nz_seen])continue;

int high_digit=under?9:(high[i]-’0’);

for(int next_digit=0;next_digit<=high_digit;next_digit++){

bool next_under=under||next_digit<(high[i]-’0’);

//set non-zero seen if we had already seen non-zero or

//if this character is not a zero

bool next_nz_seen=nz_seen||next_digit;

int next_tw=tw,next_th=th,next_fi=fi,next_se=se;

for(int factor:pf[next_digit]){

if(factor==2)next_tw++;

if(factor==3)next_th++;

if(factor==5)next_fi++;

if(factor==7)next_se++;

}

315

//if non-zero digit seen, and this digit is a zero

//then the number is divisible by anything, so

//max out all the factors

if(nz_seen&&!next_digit){

next_tw=twos;

next_th=threes;

next_fi=fives;

next_se=sevens;

}

next_tw=min(next_tw,twos);

next_th=min(next_th,threes);

next_fi=min(next_fi,fives);

next_se=min(next_se,sevens);

dp[i+1][next_under][next_tw][next_th]

[next_fi][next_se][next_nz_seen]+=

dp[i][under][tw][th][fi][se][nz_seen];

}

}

}

}

}

}

}

}

//answer is the sum of over the two entries that have all the

//factors set, with some non-zero element seen

The unhandled case when this solution fails is when the divisor has some
prime factor greater than 7. In that case, the product of digits is only divisible
if it has some non-leading zero regardless of other prime factors. The imple-
mentation of this corner case can be done as an separate DP rather than trying
to build it on top of the existing, factor-based one.

Pattern Tracking In our final pattern, we’ll examine how we can use DP
to find not just single digits, but also patterns of digits. Consider attempting
to find all numbers which contain the pattern ”13131.” We’ll first look at the
automata we would use to match this pattern on an arbitrary string:

316

q0start q1 q2 q3 q4 q5
1

̸= 1

3

1

̸= 1, 3

3 1

̸= 1

3

1

̸= 1, 3

1

̸= 1

We can simply take each of those six automata states as a DP dimension to
track how many prefixes are in each state, using the automata itself to compute
the next state:

//assume upper bounds stored in string "high"

ll dp[high.length()+1][2][6]={}; //indices, under, automata state

dp[0][0][0]=1; //base case

for(int i=0;i<high.length();i++){

for(int under=0;under<2;under++){

for(int state=0;state<6;state++){

if(!dp[i][under][state])continue;

int low_digit=0;

int high_digit=under?9:(high[i]-’0’);

for(int next_digit=low_digit;next_digit<=high_digit;next_digit++){

bool next_under=under||next_digit<(high[i]-’0’);

//execute the automata transition for this state and digit

int next_state=0;

switch(state){

case 0:

if(next_digit==1)next_state=1;

break;

case 1:

if(next_digit==1)next_state=1;

if(next_digit==3)next_state=2;

break;

case 2:

if(next_digit==1)next_state=3;

break;

case 3:

if(next_digit==1)next_state=1;

if(next_digit==3)next_state=4;

break;

case 4:

if(next_digit==1)next_state=5;

317

break;

case 5:

next_state=5;

}

dp[i+1][next_under][next_state]+=dp[i][under][state];

}

}

}

}

//answer is anything in state 5 at the end

From this perspective, we can consider any digit DP as an automata which
processes all numbers on the interval, one digit at a time. All information after
the index dimension are simply states in the automata. We compute the proper
next state transition based on the current state and the next digit.

318

	Digit DP
	Expanded Techniques

