Problem A. oeis A216264

Input file: input.txt
Output file: output.txt
Time limit: 1 second
Memory limit: 256 mebibytes
A word of length n is «rich» if it contains, as subwords, exactly n distinct palindromes. You shoud find the number of binary rich words of length i for all i from 1 to n.

Input

The input contains number $n(1 \leqslant n \leqslant 60)$.

Output

Print n integer numbers.

Example

	input.txt	
4	2	output.txt
	4	
	8	
	16	

Problem B. Pairs

Input file:	input.txt
Output file:	output.txt
Time limit:	1 second
Memory limit:	256 mebibytes

Your task is to calculate number of triplets (i, j, k) such that $i \leqslant j<k$ and $s[i . . j]$ is palindrome and $s[j+1 . . k]$ is palindrome.

Input

The input contains a line of n lowercase Latin letters $\left(1 \leqslant n \leqslant 3 \cdot 10^{5}\right)$.

Output

Print one integer - requested number of triplets.

Example

input.txt	output.txt	
abaa	5	

Problem C. oeis A216264.30

Input file: input.txt
Output file: output.txt
Time limit: 1 second
Memory limit: 256 mebibytes
A word of length n is «rich» if it contains, as subwords, exactly n distinct palindromes. You shoud find the number of binary rich words of length i for all i from 1 to n.

Input

The input contains number $n(1 \leqslant n \leqslant 30)$.

Output

Print n integer numbers.

Example

	input.txt	
4	2	output.txt
	4	
	8	
	16	

Problem D. Not common palindromes

Input file:
Output file:
input.txt
Time limit:
Memory limit:
output.txt
1.2 seconds

256 mebibytes
You're given two strings (A and B).
Your task is to find 3 numbers:

1. count of non-empty palindromes p such that $f(A, p)>f(B, p)$;
2. count of non-empty palindromes p such that $f(A, p)=f(B, p)$ and $f(A, p)$ is non-zero;
3. count of non-empty palindromes p such that $f(A, p)<f(B, p)$,
where $f(A, p)=$ count of occurrences p into A.

Input

The first line contains T, the number of tests to follow. The next $2 T$ lines contain string A and B for each test. The length of A, B will not exceed 200000 . It is guaranteed the input file will be smaller than 8 MB .

Output

For each test i print "Case $\# \mathbf{i}: \mathbf{x} \mathbf{y} \mathbf{z "}$ on a separate line where x, y and z are the three numbers to compute.

Example

input.txt	output.txt		
3	Case \#1: 4 1 2		
abacab	Case \#2: 8 3 9 9		
abccab	Case \#3: 13 0 15		
faultydogeuniversity			
hasnopalindromeatall			
abbacabbaccab			
youmayexpectedstrongsamplesbutnow		\quad	
:---			

Problem E. oeis A216264.26

Input file: input.txt
Output file: output.txt
Time limit: 1 second
Memory limit: $\quad 256$ mebibytes
A word of length n is «rich» if it contains, as subwords, exactly n distinct palindromes. You shoud find the number of binary rich words of length i for all i from 1 to n.

Input

The input contains number $n(1 \leqslant n \leqslant 26)$.

Output

Print n integers; i-th of them must be answer to the problem for length i.

Example

input.txt		output.txt
4	2	
	4	
	8	
	16	

Problem F. 100500 Palindromes

Input file:	input.txt
Output file:	output.txt
Time limit:	1 second
Memory limit:	256 mebibytes

For every prefix of some given string, determine whether it is possible to split it into $1,2,3,4,5, \ldots, n$ non-empty palindromes. Note that if we can split a string into k palindromes then we can split it into $k+2$ palindromes.

Input

The input contains a line of n lowercase Latin letters $\left(1 \leqslant n \leqslant 3 \cdot 10^{5}\right)$.

Output

Print $2 n$ integers. The i-th line should contain minimal odd k (or -1 if it doesn't exist) and minimal even k (or -2 if it doesn't exist) such that we can split string $s[1 . . i]$ into k palindromes.

Example

input.txt		output.txt
		1
	-2	
	-1	2
1	-2	
	3	2

Note

$a b a a=a b a|a=a| b|a a=a| b|a| a$.

Problem G. oeis A216264.35

Input file: input.txt
Output file: output.txt
Time limit: 1 second
Memory limit: 256 mebibytes
A word of length n is «rich» if it contains, as subwords, exactly n distinct palindromes. You shoud find the number of binary rich words of length i for all i from 1 to n.

Input

The input contains number $n(1 \leqslant n \leqslant 35)$.

Output

Print n integers; i-th of them must be answer to the problem for length i.

Example

input.txt		output.txt
4	2	
	4	
	8	
	16	

