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A. Best Matched Pair

Given n 6 1000 positive integers no larger than 104, find two of
them, producing maximum valid product, or determine that there
are no such pairs.

A number is valid if its decimal representation is a sequence of
consecutive increasing digits (like 2, 23, 56789).
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A. Best Matched Pair

Constraints are low enough to make the naive solution pass.

Check the product of each possible pair among all n·(n−1)
2 pairs of

integers.

Product consists of no more than 10 digits, so such a solution
makes about 10002

2 · 10 = 5 · 106 operations.
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B. Help the Princess!

A princess and several soldiers are located inside the W × H
rectangular maze. Some cells are blocked, exactly one cell contains
the exit. In one turn each of the soldiers and princess may move to
the cell adjacent by side or stay at the same cell. Find out if the
princess may reach the exit without being caught by a soldier.
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B. Help the Princess!

Consider the following modified version of the game. Allow soldier
catch the princess only at the exit cell, i. e. arriving to the same
cell with the princess doesn’t exit the game unless this cell contains
the exit.

Let’s show that this modification doesn’t change the outcome of
the game.

If the princess could’ve escaped, she may act as before and
still escape.

If the soldiers could act such that princess is always caught
somewhere at the field, let them act as before. When soldier
gets to the cell containing princess, let him “escort” her to the
exit and catch there.

So, the modified version of the game has exactly the same
outcome.
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B. Help the Princess!

The modified version of the game is much easier to analyze.

It’s easy to see that the optimal strategy for both the princess and
the soldiers is to move to the exit using the shortest path.

Calculate the lengths of the shortest paths to the exit by running a
breadth-first search (BFS) from the exit cell.

If the distance from the princess cell is smaller or equal to the
minimum of the distances from the soldier cells, the princess wins.

Otherwise, the soldier wins.

Complexity of the solution is O(WH).
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C. We Don’t Wanna Work!

You are given a set of ACM members with their motivation values
and several queries about people entering/leaving ACM. Top-20%
are always working hard and the rest of people never work. Your
task is to track the events of a person changing its group affiliation
after each query.
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C. We Don’t Wanna Work!

This task is about careful implementation of what is described in
the statement. There are several approaches, the one that doesn’t
require the implementation of any special data structure is
described in the further slides.
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C. We Don’t Wanna Work!

Let’s keep all people in two sets W and I , that contain workers
and idlers respectively.

In each set people are sorted according to their motivation, and in
case of a tie, according to their entrance date.

At any moment of time two conditions will be fulfilled:

1 Any person from I is worse than any person from W in terms
of motivation and entrance date.

2 |W | =
⌈
|W |+|I |

5

⌉
.
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C. We Don’t Wanna Work!

1 Any person from I is worse than any person from W in terms
of motivation and entrance date.

2 |W | =
⌈
|W |+|I |

5

⌉
.

How to satisfy those conditions when people enter or leave?

Forget about second condition for a moment.

When a person leaves ACM, just remove him from the set it
belongs to.

When a person enters ACM, if it is better than the worst person in
W , add him to W , otherwise add him to I .
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C. We Don’t Wanna Work!

The equality from the second condition may actually become
wrong after doing in this naive way.

But if equality was held previously, it couldn’t become too wrong.

The difference between the left hand and the right hand of the
equality is bounded by O(1), in fact it is no more than 1 in
absolute value.

In the other words, at most one person belongs to the wrong set.

After performing the described procedure, if the second condition
is not fulfilled, move the best person from I to W , or the worst
person from W to I .
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C. We Don’t Wanna Work!

All we need is to be able to insert people into the sets and to
extract the best/worst person in each set.

One may use an std::priority queue/PriorityQueue or an
std::set/TreeSet to store these sets.

Another more complicated ways known to the author are: using a
self-written binary search tree like a Cartesian tree, storing
everything in a set with keeping the iterator pointing to the first
hard-working person, using segment trees. . .

Ok, that’s cool, but after all, how do we solve a problem?
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C. We Don’t Wanna Work!

Note that in a described solution the one or two people that
change their affiliation are described explicitly:

If a person enters, output it with its affiliation.

If an operation of moving a person from W to I or vice versa
was performed, also output it.

The complexity is O(log(|W |+ |Q|)) per query and
O((n + q) log(n + q)) overall.
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D. Parentheses

In this problem you are to find the lexicographically smallest
shortest bracket sequence, that can be transformed into a correct
bracket sequence by performing exactly A swaps of adjacent
characters and can’t be transformed in a smaller number of swaps.
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D. Parentheses

The easiest way to solve this problem is to find several first
answers by hands or by implementing a naive bruteforce solution
and then trying to find the answer pattern.
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D. Parentheses

1 -> )(

2 -> )()(

3 -> ))((

4 -> )())((

5 -> ))()((

6 -> )))(((

7 -> )()))(((

8 -> ))())(((

9 -> )))()(((

10 -> ))))((((

11 -> )())))((((

12 -> ))()))((((

13 -> )))())((((

14 -> ))))()((((

15 -> )))))(((((

16 -> )()))))(((((

17 -> ))())))(((((

18 -> )))()))(((((

19 -> ))))())(((((

20 -> )))))()(((((

21 -> ))))))((((((

22 -> )())))))((((((

23 -> ))()))))((((((

24 -> )))())))((((((

25 -> ))))()))((((((

26 -> )))))())((((((

27 -> ))))))()((((((

28 -> )))))))(((((((
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D. Parentheses

The sequence of answer strings consists of the groups of equal
length of sizes 1, 2, 3, . . ..

Consider a single group:

)()))))(((((

))())))(((((

)))()))(((((

))))())(((((

)))))()(((((

))))))((((((

It always consists of x strings containing 2x brackets.

The i-th (starting from 1) string in a group is always
i × ’)’ + ’(’ + (x − i)× ’)’ + (x − 1)× ’(’.
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D. Parentheses

The length of the answer is O(
√
A), and the final algorithm is:

first find out the desired value of x , and then output the answer by
the rule above.

The complexity of the algorithm is O(
√
A).
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E. Similarity of Subtrees

We are given the rooted tree consisting of n vertices. Two subtrees
are called similar if they have the same number of vertices of each
depth (if we calculate the depth of a vertex as a distance from the
root of a subtree). Calculate the number of pairs of subtrees that
are similar.
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E. Similarity of Subtrees

Let’s divide all subtrees into equivalence classes.

If we have an equivalence class of size x , it produces exactly x(x−1)
2

pairs of equivalent subtrees.
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E. Similarity of Subtrees

For a tree T , define its depth-sequence s(T ) = s0, s1, s2, . . . where
si is the number of vertices of depth i .

According to the definition of similarity, two trees T1 and T2 are
similar iff s(T1) = s(T2).

Instead of comparing the depth-sequences, let’s compare their
polynomial hashes: h(T ) = (s0 · g0 + s1 · g1 + s2 · g2 + . . .)
mod P where P is some fixed prime modulo and n < g < P is
some fixed number modulo P.
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E. Simiarity of Subtrees

Suppose that we have a tree with a root v whose children are
u1, u2, . . . , uk . If we denote the whole tree with Tv and the
subtrees of v with Tu1 ,Tu2 , . . . ,Tuk , then s(Tv ) is
s(Tu1) + s(Tu2) + . . . + s(Tuk ) (a component-wise sum of
sequences) prepended with a single 1.

In terms of hashes it means that
h(Tv ) = (1 + g · (h(Tu1) + h(Tu2) + . . . + h(Tuk ))) mod P.

Calculate hashes of all subtrees in a single DFS.

Divide all subtrees into equivalence classes and calculate the
asnwer.

The solution complexity: O(n log n) (or O(n) depending on how
we calculate the equivalnce classes).
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F. Escape From the Hell

You have a long rope of length L that connects hell and whatever
is located above the hell. Your friend is trying to escape the hell by
drinking energy drinks. When drinking the i-th drink, he climbs Ai

meters up during the daytime and slides down Bi meters during
the night. Also there are sinners that are trying to catch him by
climbing Ci meters during the i-th night.

Find out what is the earliest day he can escape hell or find out that
it is impossible.
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F. Escape From the Hell

Let’s find how the optimal sequence of energy drinks looks like.

Consider all drinks except the last one. Let them be (A1,B1),
(A2,B2), . . . , (Ak ,Bk), and let the last drink be (A∗,B∗).

We know that
∑

Ai −
∑

Bi > L− A∗.

By the end of the night i we will arrive to the point
Hi = (A1 + . . . + Ai )− (B1 + . . . + Bi ).
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F. Escape From the Hell

Let’s show that in the optimal answer (Ai − Bi ) > (Ai+1 − Bi+1),
i. e. all drinks except the last one follow in the order of decreasing
“effectiveness”, where effectiveness is Ai − Bi .

Indeed, if we have (Ai − Bi ) < (Ai+1 − Bi+1), let’s swap those two
drinks. All Hj will remain the same with the only exception of Hi

that will become larger. It’s easy to see that this is only better for
us (i. e. if we weren’t caught by the sinners before this
modification, we won’t also be caught now).
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F. Escape From the Hell

Put all drinks in the descending order of (Ai − Bi ). We will now
choose some particular drink (A∗,B∗) as the last one, remove it
from this order, check if we are not caught by the sinners, and find
out the number of days we will get to the height of L− A∗.

Let’s try drinks to be final in order from left to right one by one.
Denote as p the first day that we are caught by sinners.

It is true that while we choose each new drink as a final one, p
never decreases. This is true since while we do this, Hi only
increases for all i from 1 to n − 1.

Actually process the final drinks one by one, and keep the current
value of p.
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F. Escape From the Hell

At each step check if by the moment of p we are at least on the
hight L− A∗, and if yes, find out the moment when this happened
using the binary search.

It may be convenient to use some data structure here, like a
Cartesian tree. It is possible to implement this solution without a
single data structure (using only the deque), but the
implementation I came up with contained a lot of ±1 in indices,
and was almost harder then the one with some auxillary Cartesian
tree.
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G. Share the Ruins Preservation

You are given n distinct points on a plane. Drawing an arbitrary
vertical line without crossing any of the points, and calculate the
sum of areas of convex hulls of two formed set of points. Your goal
is to find the minimum possible sum of these areas among all
choices of a vertical line.
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G. Share the Ruins Preservation

There are at most n + 1 different choices of a vertical line.

For each of the choices we will calculate both the convex hull area
of the left part and the right part.

We will start with calculating the areas of the left convex hulls.
After that we will deal with the right part in a similar way.
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G. Share the Ruins Preservation

Process possible locations of a vertical line from left to right.
Some points will be added to our convex hull.

It is possible to implement a data structure for keeping a dynamic
convex hull of points that allows adding arbitrary points in
amortized O(log n) per query, but it is pretty complex.

We didn’t utilize the important property of the points that are
added.
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G. Share the Ruins Preservation

Recall the Andrew’s convex hull algorithm (also known as a
Graham-Andrew algorithm according to e-maxx).

We will build the upper hull and the lower hull separately. Consider
the upper hull.

Add points from left to right. Store all points of the current upper
hull in the stack.

When adding a new point, remove the points from the top of the
stack, until the newly added point forms the concave angle with
two previous ones.

This works in O(n) after sorting the points in order of increasing x .

Sounds pretty useful in our case, and this algorithm actually knows
all the intermediate convex hulls, let’s use it!
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G. Share the Ruins Preservation

Figure: One step of an Andrew’s convex hull algorithm
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G. Share the Ruins Preservation

Let’s keep not only the hull points in the stack, but also the
trapezoid areas below the hull.

When removing the points from the stack, subtract their trapezoid
araes from the hull area, when adding a new point, add the newly
formed trapezoid area to the hull area.
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Figure: One step of an Andrew’s convex hull algorithm
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G. Share the Ruins Preservation

This allows us to know the area below the upper hull and also the
area below the lower hull.

The desired convex hull area is the difference of those two areas.

This provides us with an O(n log n) solution (here the sorting
phase takes O(n log n), the rest of the solution works in O(n)).
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H. Pipe Fitter and the Fierce Dogs

You have a rectangular field W × H where W and H are odd. In
each cell with odd coordinates there is a house. You may connect
K of these house with an underground source of water. The other
houses should be connected indirectly with pipes.

You may put a pipe that is oriented like ’/’, ’|’ or ’\’ in the
cells in even rows making the water flow from the upper house to
the lower house. Some of the cells in even rows contain dogs, and
putting a pipe in such a cell is twice as expensive comparing to the
usual pipe.

Find out the minimum cost of connecting all houses to water.
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H. Pipe Fitter and the Fierce Dogs

First of all, each of the (W + 1)/2 topmost houces should be
connected to the water using the underground pipe. If K pipes
isn’t enough for that then the answer desired is impossible.

Otherwise we can always connect all houses vertically.
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H. Pipe Fitter and the Fierce Dogs

In an ideal world where there are no dogs, we would obviously use
max(W+1

2 · H−12 −K , 0) pipes and spend exactly that much money.

In a real world, we will first try to build a network using no extra
underground sources that minimzes the number of pipes passing
through the dogs.

After that by spending one extra underground connection, we can
discard one pipe passing through the dog.
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H. Pipe Fitter and the Fierce Dogs

Consider two consecutive rows of houses.

Note that we may find an optimal layout without two pipes
crossing in form of X through the cell with a dog: they may always
be replaced with two parallel vertical pipes.

Call the dogs staying at the even columns even dogs, and the dogs
staying at the odd columns odd dogs (recall that the houses are
located in the odd columns).
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H. Pipe Fitter and the Fierce Dogs

Extract the segments free from the even dogs. In such segments
any four houses forming a square may be connected in a form of X.

If such segment consists of the even number of houses in each row,
just connect them by pairs using X-connections.

Otherwise, check if there exists a pair of houses that may be
connected vertically, such that there is an even number of houses
to the left and to the right of it. If it exists, use it. Otherwise we
have to make exactly one vertical connection passing through the
dog cell.
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H. Pipe Fitter and the Fierce Dogs

Calculate the minimum number of affected dogs using the
described algorithm, then discard at most K − W+1

2 of them and
calculate the final cost of such a layout.

The complexity of the described solution is O(n log n).
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I. Multisect

You have some generalized version of a binary search. You know
that f (l) = 0, f (r) = 1, f (x) is always 0 or 1 and it is
non-decreasing. Your task is to find the critical value c such that
f (c) = 0 and f (c + 1) = 1.

You know that c is chosen equiprobably from l to r − 1, and you
may perform the following operation. You choose p 6 k points
x1, . . . , xp, calculate f (x1), . . . , f (xp), and spend Tz time where z
is the number of points xi such that f (xi ) equals to 0 and
T0,T1, . . . ,Tk are given constants.

Find out the best possible expected time of finding c .
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I. Multisect

This is a typical “find the best strategy problem” that is solved
using DP.

At any moment the state is described using the only number: we
know the largest l such that f (l) = 0 and the smallest r such that
f (r) = 1, and the only thing that is important for us here is the
value of r − l .

Let’s try to calculate the value D[x ]: the best expected time that
we will spend on investigation if current segment length is exactly
x .

Obviously, D[1] = 0 since when r − l = 1, we definitely know that
the optimal c is l .
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I. Multisect

Suppose that we’ve chosen p points 0 < x1 < x2 < . . . < xp < x
(assume l = 0, r = x). What is the expected time we will spend in
such case?

The expected time for a current turn is:
x1
x T0 + x2−x1

x T1 + . . . +
xp−xp−1

x Tp−1 +
x−xp
x Tp.

The expected time for the further investigation is:
x1
x D[x1]+ x2−x1

x D[x2−x1]+. . .+
xp−xp−1

x D[xp−xp−1]+
x−xp
x D[x−xp].

That looks like a formula for a DP, but we can’t just iterate over
all possible choices of (x1, x2, . . . , xp), there are too many of them.
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I. Multisect

Let’s introduce a supplementary value that we will also calculate
using the DP: F [p][xp] = the smallest possible sum of first p terms
in two previously written sums with a given value of xp.

It’s easy to express F [p][xp] through F [p − 1][xp−1] and two extra
summands.

The overall complexity of both these two DPs is O(x2k) where
x = r − l .
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J. Compressed Formula

You are given an RLE (run-length encoding) of a long arithmetic
expression consisting only of digits, addition, subtraction and
multiplication without brackets. Calculate its value modulo
109 + 7.
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J. Compressed Formula

An insight: when you see a problem where you are asked to
perform up to 109 repetitions of some actions, it is a good idea to
think about...

Ah, whatever. Let’s just solve the problem.
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perform up to 109 repetitions of some actions, it is a good idea to
think about...

Ah, whatever. Let’s just solve the problem.
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J. Compressed Formula

Some of the parts that we have in the input may consist of a single
character (for example, ’+’). Thus, it is useful to understand how
the value of the expression is modified when we add a single
character to it.
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J. Compressed Formula

Add characters one by one. At any moment our formula looks like
the following:

C ± K · X

Constant C is the sum of all terms to the left of the one we
are currently processing;

Constant K is the product of all numbers to the left of the
number in the last term we are currently processing;

Constant X is the last number in the last term.
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J. Compressed Formula

Examples:

12 · 34 + 56 · 78 · 901: C = 12 · 34, K = 56 · 78, X = 901;

34 + 56: C = 34, K = 1, X = 56 (if K consists of zero
numbers, define it with 1);

123− 57 · 24: C = 123, K = −57, X = 24 (if there is a minus
before K , make K negative itself);

42: C = 0, K = 1, X = 42 (if there are no summands before
the last one, make C = 0).
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J. Compressed Formula

Suppose we have added a single character a to the whole string.
How have C ,K ,X changed?

If a is a digit, then C and K remain the same and X is replaced
with Xa = 10 · X + a.

If a is ’*’, then C remains the same, K is replaced with K · X and
X is replaced with 0.

If a is ’+’ or ’-’, then C is replaced with C + K · X , K is
replaced with ±1 and X is replaced with 0.

That sounds like a bunch of linear operations, we can use matrix
multiplication for performing all of this!

Aw, snap. We cannot multiply one variable by another using
matrix multiplication (K → K · X ).



A B C D E F G H I J K

J. Compressed Formula

Suppose we have added a single character a to the whole string.
How have C ,K ,X changed?

If a is a digit, then C and K remain the same and X is replaced
with Xa = 10 · X + a.

If a is ’*’, then C remains the same, K is replaced with K · X and
X is replaced with 0.

If a is ’+’ or ’-’, then C is replaced with C + K · X , K is
replaced with ±1 and X is replaced with 0.

That sounds like a bunch of linear operations, we can use matrix
multiplication for performing all of this!

Aw, snap. We cannot multiply one variable by another using
matrix multiplication (K → K · X ).



A B C D E F G H I J K

J. Compressed Formula

Suppose we have added a single character a to the whole string.
How have C ,K ,X changed?

If a is a digit, then C and K remain the same and X is replaced
with Xa = 10 · X + a.

If a is ’*’, then C remains the same, K is replaced with K · X and
X is replaced with 0.

If a is ’+’ or ’-’, then C is replaced with C + K · X , K is
replaced with ±1 and X is replaced with 0.

That sounds like a bunch of linear operations, we can use matrix
multiplication for performing all of this!

Aw, snap. We cannot multiply one variable by another using
matrix multiplication (K → K · X ).



A B C D E F G H I J K

J. Compressed Formula

Suppose we have added a single character a to the whole string.
How have C ,K ,X changed?

If a is a digit, then C and K remain the same and X is replaced
with Xa = 10 · X + a.

If a is ’*’, then C remains the same, K is replaced with K · X and
X is replaced with 0.

If a is ’+’ or ’-’, then C is replaced with C + K · X , K is
replaced with ±1 and X is replaced with 0.

That sounds like a bunch of linear operations, we can use matrix
multiplication for performing all of this!

Aw, snap. We cannot multiply one variable by another using
matrix multiplication (K → K · X ).



A B C D E F G H I J K

J. Compressed Formula

Suppose we have added a single character a to the whole string.
How have C ,K ,X changed?

If a is a digit, then C and K remain the same and X is replaced
with Xa = 10 · X + a.

If a is ’*’, then C remains the same, K is replaced with K · X and
X is replaced with 0.

If a is ’+’ or ’-’, then C is replaced with C + K · X , K is
replaced with ±1 and X is replaced with 0.

That sounds like a bunch of linear operations, we can use matrix
multiplication for performing all of this!

Aw, snap. We cannot multiply one variable by another using
matrix multiplication (K → K · X ).



A B C D E F G H I J K

J. Compressed Formula

Suppose we have added a single character a to the whole string.
How have C ,K ,X changed?

If a is a digit, then C and K remain the same and X is replaced
with Xa = 10 · X + a.

If a is ’*’, then C remains the same, K is replaced with K · X and
X is replaced with 0.

If a is ’+’ or ’-’, then C is replaced with C + K · X , K is
replaced with ±1 and X is replaced with 0.

That sounds like a bunch of linear operations, we can use matrix
multiplication for performing all of this!

Aw, snap. We cannot multiply one variable by another using
matrix multiplication (K → K · X ).



A B C D E F G H I J K

J. Compressed Formula

Our issue is that we can add a lot of digits and they they affect K
only when we “flush” them with a new ’*’. The way they affect
K is pretty complicated: multiplication is kind of a hard operation,
and linear transformations do not have any kind of a large memory,
so it’s better to keep something else that is affected by new digits
immediately.

Don’t worry if you didn’t understand what is written above, I just
tried to sound cool.
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J. Compressed Formula

Let’s deal with C , K and K · X . Suppose we have added a
character a.

If a is a digit, then C and K remain the same and K ·X is replaced
with K · Xa = K · (10 · X + a) = 10 · K · X + a · K .

If a is ’*’, then C remains the same, K is replaced with K · X and
K · X is replaced with 0.

If a is ’+’ or ’-’, then C is replaced with C + K · X , K is
replaced with ±1 and K · X is replaced with 0.

We did it! All operations now look like “we add one variable to
another with some constant coefficient”.
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J. Compressed Formula

The only small detail to discuss is how to replace K with ±1 in the
last step. By multiplying matrix onto a vector we can’t add a
constant to its component.

That’s usually not a big deal. Just create one more variable E = 1
that doesn’t change under any transformation, i. e. it always
replaced with itself.

Hooray, now we have 13 matrices corresponding to any of the
characters that may appear in the input stream.

Calculate the product of all matrices corresponding to the input,
and multiply it by the vector (C = 0,K = 1,K · X = 0,E = 1).
The answer is C + K · X .
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J. Compressed Formula

Perform all calculations modulo 109 + 7. Raise matrix to the
powers using the fast power algorithm.

The overall complexity is O(
∑
|si | log max ri ).

An interesting fact: the model solution for this problem consists of
1180 lines of code with lots of strange comments in Japanese. The
solution described above can be implemented in 94 lines of code
with zero strange comments in Japanese. Matrix multiplication
rules!
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K. Non-redundant Drive

You are given an undirected tree, whose edges have positive
lengths. In each vertex there is a gas station with a certain amount
of fuel. You are driving a car that uses 1 liter of gas per kilometer,
your task is to find a longest simple path that you make take using
a car.
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K. Non-redundant Drive

The problem asks you to find the path that has some complicated
properties.

The good direction for a thinking in such a kind of problems is a
centroid decomposition.
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K. Non-redundant Drive

Consider one layer of a centroid decomposition that is a connected
subtree with its center c .

Let’s find the longest valid path that passes through c, then
remove c from consideration and run our solution recursively from
all the remaining parts.

This is a common scheme for a centroid decomposition solution.
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Consider one layer of a centroid decomposition that is a connected
subtree with its center c .

Let’s find the longest valid path that passes through c, then
remove c from consideration and run our solution recursively from
all the remaining parts.

This is a common scheme for a centroid decomposition solution.
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K. Non-redundant Drive

Make c to be the root of a current layer. Each path passing
through c consists of two parts: an ascending part and a
descending part. Suppose that the path starts in a vertex s and
ends in a vertex t. Let’s deal with each of these two parts.
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K. Non-redundant Drive

An ascending path from s is valid if we can get to c without going
out of fuel. Temporarily allow having the negative amount of fuel.

For each vertex s calculate two values:

asc bal [s] is the final fuel balance if we get from s to the root
without charging at the root (this will be convenient in the
further calculations)

asc min bal [s] is the minimum fuel balance on the path from
s to the root

An ascending path from s is valid iff asc min bal [s] > 0.



A B C D E F G H I J K

K. Non-redundant Drive

An ascending path from s is valid if we can get to c without going
out of fuel. Temporarily allow having the negative amount of fuel.

For each vertex s calculate two values:

asc bal [s] is the final fuel balance if we get from s to the root
without charging at the root (this will be convenient in the
further calculations)

asc min bal [s] is the minimum fuel balance on the path from
s to the root

An ascending path from s is valid iff asc min bal [s] > 0.



A B C D E F G H I J K

K. Non-redundant Drive

An ascending path from s is valid if we can get to c without going
out of fuel. Temporarily allow having the negative amount of fuel.

For each vertex s calculate two values:

asc bal [s] is the final fuel balance if we get from s to the root
without charging at the root (this will be convenient in the
further calculations)

asc min bal [s] is the minimum fuel balance on the path from
s to the root

An ascending path from s is valid iff asc min bal [s] > 0.



A B C D E F G H I J K

K. Non-redundant Drive

An ascending path from s is valid if we can get to c without going
out of fuel. Temporarily allow having the negative amount of fuel.

For each vertex s calculate two values:

asc bal [s] is the final fuel balance if we get from s to the root
without charging at the root (this will be convenient in the
further calculations)

asc min bal [s] is the minimum fuel balance on the path from
s to the root

An ascending path from s is valid iff asc min bal [s] > 0.



A B C D E F G H I J K

K. Non-redundant Drive

An ascending path from s is valid if we can get to c without going
out of fuel. Temporarily allow having the negative amount of fuel.

For each vertex s calculate two values:

asc bal [s] is the final fuel balance if we get from s to the root
without charging at the root (this will be convenient in the
further calculations)

asc min bal [s] is the minimum fuel balance on the path from
s to the root

An ascending path from s is valid iff asc min bal [s] > 0.



A B C D E F G H I J K

K. Non-redundant Drive

Consider a descending path ending in t. Suppose that we start in
the root vertex with charging in it.

For each vertex t calculate the following value:

desc min bal [s] that is equal to the minimum fuel balance on the
path from the root to the t.

Depending on it, we can not say definitely if the path from root to
t is valid or not because it also depends on the ascending part of
the whole path. Let’s try to use the previously calculated values.
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K. Non-redundant Drive

A pair of s and t forms a valid path if the following conditions are
held:

asc min bal [s] > 0;

asc bal [s] + desc min bal [t] > 0;

s and t are from different subtrees of the root.

The first condition is easy to fulfill: remove all violating vertices s
from the consideration.

To fulfill the second and the third conditions, one should call upon
the Dark Forces of the Data Structures!
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K. Non-redundant Drive

Let’s fix an arbitrary order on the subtrees. Suppose that s comes
from the earlier subtree than t (and then do the same in the
reversed order of subtrees).

Summon a Fenwick Tree from the Eternal Abyss of Logarithmic
Data Structures, ask it to deal with a max operation on suffixes
(don’t know how to work with suffixes in a Fenwick Tree? You can
always work with prefixes using the Sacred Power of Symmetry).

We will store s-vertices in it, using asc bal [s] as a key and depth[s]
as a value.
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Fix a subtree for t. At this point we will have all s vertices from
the previous trees stored in a Fenwick Tree. Now for each vertex t
consider the suffix in the Fenwick tree defined by the inequality
asc bal [s] > −desc min bal [t], and find the minimum value of
depth[s] over it. This will provide us with the best choice of s for a
given t.

Relax the answer with depth[s] + depth[t] + 1.

Feel the power that flows through your veins.

As we process a single layer in O(s log s), where s is the size of the
current layer, the overall complexity is O(n log2 n).

Sorry, my sense of humour is terrible.
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