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A. The Ultimate Duel

Two players play an infinite rock-paper-scissors game. Each player
chooses symbols from a given string in a cyclic fashion. Determine if one
of the players wins a larger portion of all games than the other.

Outline: simple counting of all pairwise outcomes (i , j) under the
condition i ≡ j mod GCD(n,m).
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A. The Ultimate Duel

Let n and m be lengths of the first and second player’s string
respectively. Let ai = i mod n, bi = i mod m — indices of symbols
chosen by the players on i-th move.

The infinite sequence of pairs (ai , bi ) loops after nm/k iterations, where
k is the GCD of n and m. Moreover, a pair (a, b) occurs in the sequence
iff a ≡ b mod k, and if it does, it occurs exactly once in each loop.

Fix a remainder l ∈ [0; k − 1]. Let xP , xR , xS denote the number of
corresponding symbols among positions with i ≡ l mod k in the first
string; define yP , yR , yS similarly.

Among the games with i ≡ j ≡ l mod k, the first player wins
xPyR + xRyS + xSyP games and loses xRyP + xSyR + xPyS games.

These formulas allow us to find the number of games won by each player
in O(n) time.
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B. Mighty Spell

A string s of n characters of m types is given. Consider all subsequences
of s that contain at least one character of each of m types. Find the sum
of f (x) = 2x3 + 3x2 + 3x + 3, where x ranges over all maximal
subsegments of all admissible subsequences.

Outline: for a left endpoint of a segment there are at most m values of
right endpoint when the set of types inside the segment changes. After
some scaling we can quickly process each of these “constant” ranges.
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B. Mighty Spell

We can express f (n) =
∑n

k=1(n− k + 1)g(k) for a certain function g(k).
Now we can sum g(k) over all suitable segments instead of only maximal
segments.

Consider a segment [i ; j ]. Let S(i , j1) be the set of types inside [i ; j ], and
q(c) the number of symbols c outside the segment.

The weight of g(j − i + 1) for this segment is

w(i , j) =
∏
c∈S

2q(c) ·
∏
c 6∈S

(
2q(c) − 1

)

Notice that if for different j1, j2 we have S(i , j1) = S(i , j2), then the right
half of the product (over c 6∈ S) stays the same, since all these symbols
are outside. Moreover, this half depends only on S .
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B. Mighty Spell

For each left endpoint i consider all right endpoints j1, . . . , jk such that
S(i , j?) 6= S(i , j? − 1). If j ranges between consecutive jk and jk+1, the
value of w(i , j) halves for each character appended.

Let w ′(i , j) = w(i , j)2j−i+1. The above reasoning is equivalent to the
fact that w ′(i , j) is constant between consecutive jk and jk+1.

We will count all Al — sums of w ′(i , j) for all segment lengths
l = j − i + 1 separately. That way we will be able to easily obtain the
answer at the end:

Ans =
n∑

l=1

Al2
−lg(l)

Since w ′(i , j) has O(m) ranges of constant value, accounting for a single
endpoint i requires O(m) offline range additions.
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B. Mighty Spell

We now process values of i by decreasing. Consider costs of changing
from i + 1 to i .

Among boundaries jk only one gets changed (namely, j1 = i), that is, the
list can be updated in O(m).

Range-constant values of w ′(i , j) can be computed by increasing of jk in
O(m): we only to omit a single factor from

∏
c 6∈S

(
2q(c) − 1

)
and

account for different length of the segment.

The resulting complexity of the solution is O(nm).
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C. The Defense Fence

We are given n points in the plane. Two of them are (0, 0) and (d , 0).
Build a polygon with points in the set that contains (0, 0) and (d , 0) as
vertices and also doesn’t have two vertices with distance more than d
apart. Maximize area of the polygon.

Obviously it suffices to consider only convex polygons.

Outline: construct upper and lower halves of the polygon while
simulating rotating calipers, DP on all states of the process with angle
sorting optimization.
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C. The Defense Fence

Recall the “rotating calipers” algorithm for finding diameter (largest
distance between vertices) of a convex polygon.

Fix a direction d and “lock” the polygon between two lines parallel to d .
Let us call vertices that lie on the border lines the resting points for the
direction d .
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C. The Defense Fence

Gradually rotate d (say, counterclockwise), the lines will rotate around
corresponding resting points.
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C. The Defense Fence

One (or both) resting point will shift to the next vertex when d becomes
parallel to a side of the polygon. Among two sides the one with smaller
angle with Oy will be first to be shifted along.



A B C D E F G H I J

C. The Defense Fence

Continue this process until d travels full circle (it’s actually enough to
travel half of a circle). The maximal possible distance is attained between
a pair of resting point for a certain value of d . (Showing this is an
exercise).

Clearly, there are only O(n) pairs of points to try.
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C. The Defense Fence

The solution to the actual problem proceeds as follows: we will be
considering all ways to construct lower and upper parts of polygon in
parallel between (0, 0) and (d , 0) counterclockwise.

We will consider the points to be appended in the same order as the
“rotating calipers” algorithm would make them resting points.
Meanwhile we will make sure that no situation when two resting points
are at distance greater than d arises.

A situation (that is, a DP state) is fully described by the pair of resting
points and the direction d . If we will consider only “critical” moments,
i.e. when a resting point is shifted, there are O(n3) possible situations
since d is a vector from a previous resting point (O(n) options) to one of
the two current resting point (O(1)).

For each of these situations we will maximize the partial area (signed sum
of directed trapezoids areas) over all ways to reach the particular
situation. The answer for the situation with (d , 0) and (0, 0) the resting
points (note that the order is swapped) is the answer to the global
problem.
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C. The Defense Fence

An evident O(n4) solution follows: for each situation consider all options
for the next resting point shift. An option is admissible if d rotates
counterclockwise.

We can use a standard angle sorting trick to optimize to O(n3 log n).

Consider all situations with resting points v and u (with many choices of
a previous resting point).

Consider all possible preceding (with an earlier resting point) and current
situations, order all of them by rotating d counterclockwise.

Since a transfer from a preceding to a current situation is possible
whenever d rotates counterclockwise, for each current situation
admissible preceding situations from a prefix in the constructed order.

Now follow this order and maintain optimal sub-answer for the prefix that
is currently covered. This can be used to obtain the answer for each
current situation in O(1).
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An evident O(n4) solution follows: for each situation consider all options
for the next resting point shift. An option is admissible if d rotates
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D. The Road Networks

We are given a sequence w1, . . . , wn. Connect i and j with an edge iff
wi + wj > d . Find the size of the maximal cut in the resulting graph, also
find the number of cuts with such size.

Outline: choose a suitable ordering of vertices, see a simple DP.
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D. The Road Networks

Let us call a number x large if 2x > d , and small otherwise. Clearly, all
large numbers form a clique, and all small number form an anti-clique.

The main idea is to choose a suitable order of vertices to process so that
for each small number all adjacent (large) numbers are exactly the large
numbers that occur earlier in the order. That allows us to apply DP with
parameters (number of vertices processed, number of large numbers in
each half of the cut).

Value of each DP subproblem is a pair (the size of maximal cut with
these parameters, the number of such cuts).
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D. The Road Networks

First, replace all wi > d with d .

Then, let us reorder the sequence w1,
. . . , wn according to the following order:

d , 0, d − 1, 1, d − 2, 2, . . .

That is, put all occurences of d first, all occurences of 0 immediately
after, and so on.
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D. The Road Networks

Suppose we are in a state dpk,i : we processed k vertices, and we put
exactly i of large of them in the first part of the cut. Denote Lk the
number of large vertices among first k , then exactly Lk − i large vertices
are in the second half.

If the next number goes to the first or second half of the cut, the size of
cut increases by Lk − i or i respectively (regardless if the new number is
large or small).

Additionally, if the new number is large and goes to the first half, the
value of i increases by 1.

The resulting DP scheme has O(n2) states and transitions, thus this also
is a time complexity bound.
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E. Great Hunt

We have a tree on n vertices which is a root with some paths growing
out of it (we’ll call them vines). We also have n simple paths in the tree.
Build a bijection between paths and vertices so that each path contains
its vertex.

Outline: combine greediness inside vines with maxflow to deal with path
between vines.
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E. Great Hunt

Let’s handle two partial cases of this problem that will comprise a full
solution.

Case 1: No path contains more than one child of the root (that is,
doesn’t pass through the root, but might contain it).

Now each path is contained in some vine. We now have a set of
independent one-dimensional problems: representing each vine as an
array and paths as its subsegments, we have to find a distinct point in
each subsegment. This can be done by a standard greedy algorithm:

Sort all subsegments by increasing the left endpoint position.

Iterate over position x from left to right. Mark subsegments as
active as soon as they contain x .

For each position x choose an active subsegment with the smallest
right endpoint position. If it doesn’t contain x , then FAIL.

This will work in O(n log n) in total if we use an std::set or such for
extracting minimums.
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E. Great Hunt

Case 2: each path contains the root.

Let’s build a flow network as follows. Direct all edges of the tree towards
the root and assign infinite capacities to them. For each vertex add edge
to the sink with capacity 1 (not shown on the picture);
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E. Great Hunt

For each path introduce a new vertex v with a 1-capacity edge from the
source (not shown). Add 1-capacity edges from v to endpoints of the
path.

v

Consider a flow in this network. Each path in the decomposition flows
through some “path” vertex and out of a tree vertex inside the path.
Thus a correct matching can be established iff flow of amount n exists.
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E. Great Hunt

To obtain the full solution we can first greedily assign the lowest possible
point to each path inside a vine (much like in case 1), and then match
the unused points with paths passing through the root (like in case 2).

The heaviest part is obviously the second. The constructed network has
O(n) vertices and edges, thus a simple FF algorithm will find a maximal
flow in O(n2) time (and Dinic and the likes probably even faster).

Oh, and a simple Kuhn on vertex-path adjacency matrix passes despite
O(n3) worst-case complexity.
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F. The Jump Address

Count the number of permutations on n numbers with sum of indices of
all ascents equal to k.

Outline: magic recurrence.
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F. The Jump Address

Denote fn,k the answer to the problem. Let us look at first few values of
fn,k :

n\k 0 1 2 3 4 5 6 7 8 9 10
1 1
2 1 1
3 1 2 2 1
4 1 3 5 6 5 3 1
5 1 4 9 15 20 22 20 15 9 4 1

Can you guess the rule that governs those numbers?
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F. The Jump Address

Turns out fn,k =
∑k−1

i=0 fn−1,k−i (e.g., in the table below the red number
is the sum of blue numbers).

n\k 0 1 2 3 4 5 6 7 8 9 10
1 1
2 1 1
3 1 2 2 1
4 1 3 5 6 5 3 1
5 1 4 9 15 20 22 20 15 9 4 1

This recurrence can be used to simple compute each number in O(n3)
using prefix sums in each row.

The simplest way to discover the recurrence probably is meditating long
enough while looking at this table.
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F. The Jump Address

The number fn,k doesn’t change if we count descents positions instead of
ascents; in that case the value is called the major index of a permutation.

To see why the recurrence holds have a look at the following example
(borrowed from the paper “Inversions and Major Index for Permutations”
by T. Thanatipanonda):

The permutation 5724631 has major index 2 + 5 + 6 = 13. Consider all
ways to insert 8 into the permutation and observe how the major index
changes.
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F. The Jump Address

57246318: 2 + 5 + 6 = 13.

57246381: 2 + 5 + 7 = 14.

57246831: 2 + 6 + 7 = 15.

57248631: 2 + 5 + 6 + 7 = 20.

57284631: 2 + 4 + 6 + 7 = 19.

57824631: 3 + 6 + 7 = 16.

58724631: 2 + 3 + 6 + 7 = 18.

85724631: 1 + 3 + 6 + 7 = 17.

We leave finding a pattern in these numbers and the details of the proof
as an exercise.
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F. The Jump Address

Still, is there a tangible reason why major index is distributed exactly as
the number of inversions?

It is possible to establish a bijection between permutations with major
index k and inversion number k, but no simple and/or natural bijection is
known.

So, the best answer to the question above is

MAGIC
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G. The Imaginary Girlfriend

Given a set of vertical and horizontal segments in the plane, find the
shortest path length between two points.

Outline: convoluted sweep-line+SQRT algorithm that optimizes against
full grid cases.
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G. The Imaginary Girlfriend

Finding all pairwise intersections within a set of H/V segments is a fairly
common sweep-line task. Thus we can build an explicit graph of all
intersections and endpoints with segment parts between them. The catch
is there can be Ω(n2) intersections, and Dijkstra will not be fast enough
to deal with such a large graph.

The bad case is a full rectangular grid. The key observation is that if
start and finish points are outside a subgraph which is a grid, then most
of the intersection points can be erased without changing distances.
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G. The Imaginary Girlfriend

Here is a brief description of the algorithm. Suppose that coordinates are
compressed, and x ∈ [0; n).

Divide [0; n) into ∼
√
n subsegments, and for

each subsegment construct the subgraph that falls within the
corresponding vertical strip.

Each strip is processed as follows: perform a vertical sweep-line and
process all events: start/end of a vertical segment, a horizontal segment.
While there are no endpoints inside the strip, the part of the graph is
considered a complete grid.

If the current horizontal segment crosses the strip entirely, it is appended
to the complete grid structure.

If a start/finish point or an endpoint of any kind is encountered, explicit
edges between intersections are needed, and the currently accumulated
complete grid is “flushed”.
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Each strip is processed as follows: perform a vertical sweep-line and
process all events: start/end of a vertical segment, a horizontal segment.
While there are no endpoints inside the strip, the part of the graph is
considered a complete grid.

If the current horizontal segment crosses the strip entirely, it is appended
to the complete grid structure.

If a start/finish point or an endpoint of any kind is encountered, explicit
edges between intersections are needed, and the currently accumulated
complete grid is “flushed”.
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G. The Imaginary Girlfriend

While flushing the grid we create all segments in the grid, but only
intersections which are on the border are introduced. No endpoints or
start/finish are inside, thus the distances are preserved.

Finally a careful “gluing” of adjacent strips is required.

One can ensure that the described process constructs a graph of size
O(n
√
n). Finally, Dijkstra algorithm is used to find the shortest path.
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G. The Imaginary Girlfriend

For more details refer to the attached paper (please share responsibly).

The algorithm in the paper is actually capable to answer online distance
queries in O(log n) after O(n

√
n) preprocessing.
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H. The Kirakira Cycle

We are given an integer n. Define a function f (x) =
∑n

k=1 x mod k.
Find the largest length of a cycle of this function.

Outline: Straightforward O(n2 log n) is not too much, but even if it is,
lots of room to optimize.
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H. The Kirakira Cycle

Since f (x) 6 0 + . . .+ n − 1 = n(n − 1)/2 for every x , we can ignore
numbers larger than n(n − 1)/2 since they don’t lie on any cycle.

Let us compute f (x) for all x = 0, . . . , n(n − 1)/2. Explicit computation
would require O(n3) time.

Consider f (x)− f (x − 1) =
∑n

k=1 δ(x , k), where
δ(x , k) = (x mod k)− ((x − 1) mod k).

δ(x , k) = −(k − 1) if x is divisible by k, and 1 otherwise. Thus, there are
O(n2 log n) values of δ(x , k) 6= 1.

This allows us to compute f (x)− f (x − 1) for all x = 1, . . . , n(n− 1)/2 in
O(n2 log n) time, and then compute prefix sums to obtain values of f (x).
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H. The Kirakira Cycle

Finally, use the values of f (x) to traverse and find all cycles in the
function graph of f . Note that memory limit is not generous, so one
should use an array of char’s or a bitset for marking visited vertices.

The resulting solution is O(n2 log n) time and O(n2) space. It also may
require additional optimization to fit in TL.

Authors’ solution uses additional ideas:

since f (x) is somewhat “random”, we can assume that all values of
f (x) are concentrated around n(n − 1)/4.

to optimize for memory, one can choose random x as a starting
point of the cycle and find the cycle in O(l), where l is the length of
the cycle. Again, f is “random”, so there won’t be really long
cycles. Repeat as many times as needed to find the longest cycle
(note that it has the highest probability to be found randomly).
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I. The Impressive Path

Construct a simple path of length t between opposite corners of a
rectangular n ×m field. n,m > 8, n + m 6 t 6 3

4nm.

Outline: brute-force with clever local-global decision making. Or not.
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I. The Impressive Path

A summary of authors’ solution (to my best understanding). Our path
will consist of dense and sparse parts.

A dense part starts and ends in particular points of a 4× 4 square and
fills it (almost) completely. A sufficient number of dense parts of different
kinds can be constructed using brute-force or manually.

A sparse part just moves from point to point using a short path.

Construct a part with an optimized recursion: if there are a lot more steps
to make than the distance to finish, place an appropriate dense block.
Otherwise, recursively try to find a short path with appropriate length.

A summary of a team’s AC solution: brute-force the path pruning the
case when we don’t have enough steps to reach the finish.
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J. The Magic Square

For a given n, present a way to cut a square s × s (with s of your choice)
into exactly n squares.

Outline: simple construction with a couple of cases.
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J. The Magic Square

If n is even and greater than 2, we can use a construction depicted below:
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J. The Magic Square

If n is odd and greater than 5, we can cut the square into n − 3 squares
as before, and then cut any square into four equal parts:
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J. The Magic Square

The only values without a solution are n = 2, 3, 5 (n = 1 is trivial).

Let us prove that these values have no solution. If the partition of the
initial square S is non-trivial, the corners of S end up belonging to
different squares sLU , sRU , sLD , sRD , thus n > 4.

If n = 5, there is at most one additional square in the partition (that is,
not containing any corner of S). It is adjacent to at most one side of S ,
thus for other three sides we have l(s) + l(s ′) = l(S), where l(s) is the
length of a side of a square s, s and s ′ are squares adjacent to the side of
S .

That implies that l(sLU) = l(sRD) = l(S)− l(sLD) = l(S)− l(sRU). But
we also have l(sLU) + l(sRD) 6 l(S), l(sLD) + l(sRU) 6 l(S). All these
conditions imply that all four squares are equal and partite S .
Contradiction.
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