Day 4: LiJie Chen Contest November 12, 2016

by Niyaz Nigmatullin (ITMO University)

Moscow International Workshop ACM ICPC, MIPT, 2016

A. Life game

- Given a matrix
- of size up to 50

A. Life game

- Given a matrix
- of size up to 50
- Color each element of matrix in one of two colors

A. Life game

- Given a matrix
- of size up to 50
- Color each element of matrix in one of two colors
- You have up to 50000 awards you can get
- $x_{1}, x_{2}, y_{1}, y_{2}, c$ and m
- You get an award m if submatrix $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ is colored in c

A. Life game

- Given a matrix
- of size up to 50
- Color each element of matrix in one of two colors
- You have up to 50000 awards you can get
- $x_{1}, x_{2}, y_{1}, y_{2}, c$ and m
- You get an award m if submatrix $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ is colored in c
- There are also awards for each cell colored
- These one can be converted to the same awards as before
- One cell is also submatrix

A. Life game

- Given a matrix
- of size up to 50
- Color each element of matrix in one of two colors
- You have up to 50000 awards you can get
- $x_{1}, x_{2}, y_{1}, y_{2}, c$ and m
- You get an award m if submatrix $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ is colored in c
- There are also awards for each cell colored
- These one can be converted to the same awards as before
- One cell is also submatrix
- Earn maximum amount of money

A. Life game

Solution

- Dividing elements into two subsets reminds of $\langle S, T\rangle$-cut

A. Life game

Solution

- Dividing elements into two subsets reminds of $\langle S, T\rangle$-cut
- Build a network, so that there is a bijection between $\langle S, T\rangle$-cuts and different colorings

A. Life game

Solution

- Dividing elements into two subsets reminds of $\langle S, T\rangle$-cut
- Build a network, so that there is a bijection between $\langle S, T\rangle$-cuts and different colorings
- Make cut value equal to corresponding amount of money

A. Life game

Solution

- Dividing elements into two subsets reminds of $\langle S, T\rangle$-cut
- Build a network, so that there is a bijection between $\langle S, T\rangle$-cuts and different colorings
- Make cut value equal to corresponding amount of money
- We can find minimum cut and we have to maximize answer

A. Life game

Solution

- Dividing elements into two subsets reminds of $\langle S, T\rangle$-cut
- Build a network, so that there is a bijection between $\langle S, T\rangle$-cuts and different colorings
- Make cut value equal to corresponding amount of money
- We can find minimum cut and we have to maximize answer
- Assume that we already earned all the money and have to return the money for non-satisfied awards

A. Life game

Solution

- Dividing elements into two subsets reminds of $\langle S, T\rangle$-cut
- Build a network, so that there is a bijection between $\langle S, T\rangle$-cuts and different colorings
- Make cut value equal to corresponding amount of money
- We can find minimum cut and we have to maximize answer
- Assume that we already earned all the money and have to return the money for non-satisfied awards
- Minimize amount of money we have to return

A. Life game

Solution

- Dividing elements into two subsets reminds of $\langle S, T\rangle$-cut
- Build a network, so that there is a bijection between $\langle S, T\rangle$-cuts and different colorings
- Make cut value equal to corresponding amount of money
- We can find minimum cut and we have to maximize answer
- Assume that we already earned all the money and have to return the money for non-satisfied awards
- Minimize amount of money we have to return
- Let this amount be the value of the cut

A. Life game

Solution

- Dividing elements into two subsets reminds of $\langle S, T\rangle$-cut
- Build a network, so that there is a bijection between $\langle S, T\rangle$-cuts and different colorings
- Make cut value equal to corresponding amount of money
- We can find minimum cut and we have to maximize answer
- Assume that we already earned all the money and have to return the money for non-satisfied awards
- Minimize amount of money we have to return
- Let this amount be the value of the cut
- Consider one award, let's say $c=0$

A. Life game

Solution

- Dividing elements into two subsets reminds of $\langle S, T\rangle$-cut
- Build a network, so that there is a bijection between $\langle S, T\rangle$-cuts and different colorings
- Make cut value equal to corresponding amount of money
- We can find minimum cut and we have to maximize answer
- Assume that we already earned all the money and have to return the money for non-satisfied awards
- Minimize amount of money we have to return
- Let this amount be the value of the cut
- Consider one award, let's say $c=0$
- Create one vertex v for this award

A. Life game

Solution

- Dividing elements into two subsets reminds of $\langle S, T\rangle$-cut
- Build a network, so that there is a bijection between $\langle S, T\rangle$-cuts and different colorings
- Make cut value equal to corresponding amount of money
- We can find minimum cut and we have to maximize answer
- Assume that we already earned all the money and have to return the money for non-satisfied awards
- Minimize amount of money we have to return
- Let this amount be the value of the cut
- Consider one award, let's say $c=0$
- Create one vertex v for this award
- Add edges of $+\infty$ capacity from v to vertices in its submatrix

A. Life game

Solution

- Dividing elements into two subsets reminds of $\langle S, T\rangle$-cut
- Build a network, so that there is a bijection between $\langle S, T\rangle$-cuts and different colorings
- Make cut value equal to corresponding amount of money
- We can find minimum cut and we have to maximize answer
- Assume that we already earned all the money and have to return the money for non-satisfied awards
- Minimize amount of money we have to return
- Let this amount be the value of the cut
- Consider one award, let's say $c=0$
- Create one vertex v for this award
- Add edges of $+\infty$ capacity from v to vertices in its submatrix
- Add edge of m capacity from source to v

A. Life game

Solution

- Do for $c=1$ in the same way
- Create one vertex v for this award
- Add edges of $+\infty$ capacity from vertices in its submatrix to v
- Add edge of m capacity from v to sink

A. Life game

Solution

- Do for $c=1$ in the same way
- Create one vertex v for this award
- Add edges of $+\infty$ capacity from vertices in its submatrix to v
- Add edge of m capacity from v to sink
- One can see, that if award criterion is not satisfied, then m-valued edge is intersecting a cut

A. Life game

Solution

- Do for $c=1$ in the same way
- Create one vertex v for this award
- Add edges of $+\infty$ capacity from vertices in its submatrix to v
- Add edge of m capacity from v to sink
- One can see, that if award criterion is not satisfied, then m-valued edge is intersecting a cut
- This will give up to $50^{2} \cdot 50000$ edges and $50+50000$ vertices
- Pretty much for maxflow algorithms

A. Life game

Optimizing

- Make 2D sparse table structure

A. Life game

Optimizing

- Make 2D sparse table structure
- Add vertex for every r, c, k_{r}, k_{c}
- Submatrix $\left[r, r+2^{k_{r}}\right) \times\left[c, c+2^{k_{c}}\right)$

A. Life game

Optimizing

- Make 2D sparse table structure
- Add vertex for every r, c, k_{r}, k_{c}
- Submatrix $\left[r, r+2^{k_{r}}\right) \times\left[c, c+2^{k_{c}}\right)$
- Don't add edges from every cell to an award
- Add 4 edges from 4 submatrices of power-of- 2 sizes to an award as in 2D sparse table
- We don't care if they overlap

A. Life game

Optimizing

- Make 2D sparse table structure
- Add vertex for every r, c, k_{r}, k_{c}
- Submatrix $\left[r, r+2^{k_{r}}\right) \times\left[c, c+2^{k_{c}}\right)$
- Don't add edges from every cell to an award
- Add 4 edges from 4 submatrices of power-of- 2 sizes to an award as in 2D sparse table
- We don't care if they overlap
- Add $+\infty$ edges between power-of-2 size submatrices
- From big one to two times smaller ones

A. Life game

Optimizing

- Make 2 such structures
- One for outgoing edges
- Another for incoming edges

A. Life game

Optimizing

- Make 2 such structures
- One for outgoing edges
- Another for incoming edges
- As it turns out, this optimization helps to get passed TL

A. Life game

Optimizing

- Make 2 such structures
- One for outgoing edges
- Another for incoming edges
- As it turns out, this optimization helps to get passed TL
- Fast algorithms like Dinitz or Preflow-push algorithms help

A. Life game

Optimizing

- Make 2 such structures
- One for outgoing edges
- Another for incoming edges
- As it turns out, this optimization helps to get passed TL
- Fast algorithms like Dinitz or Preflow-push algorithms help
- Here we have about $2 \cdot 50^{2} \cdot \log ^{2} 50$ edges for sparse table
- $5 \cdot 50000$ edges for edges between awards and submatrices
- And $2 \cdot 50^{2} \cdot \log ^{2} 50+50000$ vertices

B. Reincarnation

- You are given a string s - Length up to 5000

B. Reincarnation

- You are given a string s
- Length up to 5000
- You are also given queries
- Given L and R
- Find number of different substrings in $s(L, R)$

B. Reincarnation

Solution

- Solution is similar to number of different colors in subtree of rooted tree problem

B. Reincarnation

Solution

- Solution is similar to number of different colors in subtree of rooted tree problem
- Build an array of $f_{L, R}$ - number of substrings in $s(L, R)$

B. Reincarnation

Solution

- Solution is similar to number of different colors in subtree of rooted tree problem
- Build an array of $f_{L, R}$ - number of substrings in $s(L, R)$
- Initialize $f_{i, j}=0$ for all i and j

B. Reincarnation

Solution

- Solution is similar to number of different colors in subtree of rooted tree problem
- Build an array of $f_{L, R}$ - number of substrings in $s(L, R)$
- Initialize $f_{i, j}=0$ for all i and j
- Substring $s(i, j)$ is inside all (x, y) for $x \leqslant i$ and $j \leqslant y$
- For all $i \leqslant j$ add 1 to all $f_{x, y}$ such that $x \leqslant i$ and $j \leqslant y$

B. Reincarnation

Solution

- Solution is similar to number of different colors in subtree of rooted tree problem
- Build an array of $f_{L, R}$ - number of substrings in $s(L, R)$
- Initialize $f_{i, j}=0$ for all i and j
- Substring $s(i, j)$ is inside all (x, y) for $x \leqslant i$ and $j \leqslant y$
- For all $i \leqslant j$ add 1 to all $f_{x, y}$ such that $x \leqslant i$ and $j \leqslant y$
- Get all substrings equal to some t

B. Reincarnation

Solution

- Solution is similar to number of different colors in subtree of rooted tree problem
- Build an array of $f_{L, R}$ - number of substrings in $s(L, R)$
- Initialize $f_{i, j}=0$ for all i and j
- Substring $s(i, j)$ is inside all (x, y) for $x \leqslant i$ and $j \leqslant y$
- For all $i \leqslant j$ add 1 to all $f_{x, y}$ such that $x \leqslant i$ and $j \leqslant y$
- Get all substrings equal to some t
- $t=s\left(i_{1}, j_{1}\right)=s\left(i_{2}, j_{2}\right)=\ldots=s\left(i_{k}, j_{k}\right)$
- $i_{1}<i_{2}<\cdots<i_{k}$
- $j_{1}-i_{1}=j_{2}-i_{2}=\cdots=j_{k}-i_{k}$

B. Reincarnation

Solution

- Solution is similar to number of different colors in subtree of rooted tree problem
- Build an array of $f_{L, R}$ - number of substrings in $s(L, R)$
- Initialize $f_{i, j}=0$ for all i and j
- Substring $s(i, j)$ is inside all (x, y) for $x \leqslant i$ and $j \leqslant y$
- For all $i \leqslant j$ add 1 to all $f_{x, y}$ such that $x \leqslant i$ and $j \leqslant y$
- Get all substrings equal to some t
- $t=s\left(i_{1}, j_{1}\right)=s\left(i_{2}, j_{2}\right)=\ldots=s\left(i_{k}, j_{k}\right)$
- $i_{1}<i_{2}<\cdots<i_{k}$
- $j_{1}-i_{1}=j_{2}-i_{2}=\cdots=j_{k}-i_{k}$
- Subtract 1 of all $f_{x, y}$ such that $x \leqslant i_{e}$ and $j_{e+1} \leqslant y$
- for $1 \leqslant e<k$

B. Reincarnation

Solution

- Solution is similar to number of different colors in subtree of rooted tree problem
- Build an array of $f_{L, R}$ - number of substrings in $s(L, R)$
- Initialize $f_{i, j}=0$ for all i and j
- Substring $s(i, j)$ is inside all (x, y) for $x \leqslant i$ and $j \leqslant y$
- For all $i \leqslant j$ add 1 to all $f_{x, y}$ such that $x \leqslant i$ and $j \leqslant y$
- Get all substrings equal to some t
- $t=s\left(i_{1}, j_{1}\right)=s\left(i_{2}, j_{2}\right)=\ldots=s\left(i_{k}, j_{k}\right)$
- $i_{1}<i_{2}<\cdots<i_{k}$
- $j_{1}-i_{1}=j_{2}-i_{2}=\cdots=j_{k}-i_{k}$
- Subtract 1 of all $f_{x, y}$ such that $x \leqslant i_{e}$ and $j_{e+1} \leqslant y$
- for $1 \leqslant e<k$
- Then just answer all queries outputting $f_{L, R}$

B. Reincarnation

Why will it work?

- Consider some $s(L, R)$

B. Reincarnation

Why will it work?

- Consider some $s(L, R)$
- Suppose there are w copies of t in $s(L, R)$

B. Reincarnation

Why will it work?

- Consider some $s(L, R)$
- Suppose there are w copies of t in $s(L, R)$
- We added 1 for each of the copy, so it's $+w$

B. Reincarnation

Why will it work?

- Consider some $s(L, R)$
- Suppose there are w copies of t in $s(L, R)$
- We added 1 for each of the copy, so it's $+w$
- For each neighbouring copies we subtracted 1 , so it's $-(w-1)$

B. Reincarnation

Why will it work?

- Consider some $s(L, R)$
- Suppose there are w copies of t in $s(L, R)$
- We added 1 for each of the copy, so it's $+w$
- For each neighbouring copies we subtracted 1 , so it's $-(w-1)$
- So it's $w-(w-1)=+1$ for each substring that is inside

B. Reincarnation

Implementation

- Calculate $\operatorname{LCP}(i, j)$
- Longest common prefix of $s(i,|s|)$ and $s(j,|s|)$

B. Reincarnation

Implementation

- Calculate $\operatorname{LCP}(i, j)$
- Longest common prefix of $s(i,|s|)$ and $s(j,|s|)$
- Fix i and iterate over j

B. Reincarnation

Implementation

- Calculate $\operatorname{LCP}(i, j)$
- Longest common prefix of $s(i,|s|)$ and $s(j,|s|)$
- Fix i and iterate over j
- Find equal substrings to those, which start at i

B. Reincarnation

Implementation

- Calculate $\operatorname{LCP}(i, j)$
- Longest common prefix of $s(i,|s|)$ and $s(j,|s|)$
- Fix i and iterate over j
- Find equal substrings to those, which start at i
- Maintain d the longest substring found so far

B. Reincarnation

Implementation

- Calculate $\operatorname{LCP}(i, j)$
- Longest common prefix of $s(i,|s|)$ and $s(j,|s|)$
- Fix i and iterate over j
- Find equal substrings to those, which start at i
- Maintain d the longest substring found so far
- If $\operatorname{LCP}(i, j)>d$
- We found substrings with lengths $d+1 \ldots L C P(i, j)$

B. Reincarnation

Implementation

- Calculate $\operatorname{LCP}(i, j)$
- Longest common prefix of $s(i,|s|)$ and $s(j,|s|)$
- Fix i and iterate over j
- Find equal substrings to those, which start at i
- Maintain d the longest substring found so far
- If $\operatorname{LCP}(i, j)>d$
- We found substrings with lengths $d+1 \ldots L C P(i, j)$
- For each substring of length $d+1 \leqslant g \leqslant L C P(i, j)$ subtract 1

B. Reincarnation

Implementation

- Calculate $\operatorname{LCP}(i, j)$
- Longest common prefix of $s(i,|s|)$ and $s(j,|s|)$
- Fix i and iterate over j
- Find equal substrings to those, which start at i
- Maintain d the longest substring found so far
- If $\operatorname{LCP}(i, j)>d$
- We found substrings with lengths $d+1 \ldots L C P(i, j)$
- For each substring of length $d+1 \leqslant g \leqslant L C P(i, j)$ subtract 1
- Subtract 1 from $f_{x, y}$ such that $x \leqslant i$ and $j+g-1 \leqslant y$

B. Reincarnation

Implementation

- Calculate $\operatorname{LCP}(i, j)$
- Longest common prefix of $s(i,|s|)$ and $s(j,|s|)$
- Fix i and iterate over j
- Find equal substrings to those, which start at i
- Maintain d the longest substring found so far
- If $\operatorname{LCP}(i, j)>d$
- We found substrings with lengths $d+1 \ldots L C P(i, j)$
- For each substring of length $d+1 \leqslant g \leqslant L C P(i, j)$ subtract 1
- Subtract 1 from $f_{x, y}$ such that $x \leqslant i$ and $j+g-1 \leqslant y$
- Partial sums will help iterating over g

B. Reincarnation

Implementation

- Calculate $\operatorname{LCP}(i, j)$
- Longest common prefix of $s(i,|s|)$ and $s(j,|s|)$
- Fix i and iterate over j
- Find equal substrings to those, which start at i
- Maintain d the longest substring found so far
- If $\operatorname{LCP}(i, j)>d$
- We found substrings with lengths $d+1 \ldots L C P(i, j)$
- For each substring of length $d+1 \leqslant g \leqslant L C P(i, j)$ subtract 1
- Subtract 1 from $f_{x, y}$ such that $x \leqslant i$ and $j+g-1 \leqslant y$
- Partial sums will help iterating over g
- And 2D Partial sums will help adding $f_{x, y}$ for $x \leqslant i$ and $j \leqslant y$

B. Reincarnation

Implementation

- Calculate $\operatorname{LCP}(i, j)$
- Longest common prefix of $s(i,|s|)$ and $s(j,|s|)$
- Fix i and iterate over j
- Find equal substrings to those, which start at i
- Maintain d the longest substring found so far
- If $\operatorname{LCP}(i, j)>d$
- We found substrings with lengths $d+1 \ldots L C P(i, j)$
- For each substring of length $d+1 \leqslant g \leqslant L C P(i, j)$ subtract 1
- Subtract 1 from $f_{x, y}$ such that $x \leqslant i$ and $j+g-1 \leqslant y$
- Partial sums will help iterating over g
- And 2D Partial sums will help adding $f_{x, y}$ for $x \leqslant i$ and $j \leqslant y$
- Solution time and memory complexity is $O\left(|s|^{2}+Q\right)$
- Q - the number of queries

B. Reincarnation

Suffix tree or automaton solution

- For every suffix build suffix data structure in linear time

B. Reincarnation

Suffix tree or automaton solution

- For every suffix build suffix data structure in linear time
- Append single letter
- Learn how the number of substrings changed

B. Reincarnation

Suffix tree or automaton solution

- For every suffix build suffix data structure in linear time
- Append single letter
- Learn how the number of substrings changed
- For automaton it's += len[last] - len[sufLink[last]]

B. Reincarnation

Suffix tree or automaton solution

- For every suffix build suffix data structure in linear time
- Append single letter
- Learn how the number of substrings changed
- For automaton it's += len[last] - len[sufLink[last]]
- Still $O\left(|s|^{2}\right)$ time and $O\left(|s|^{2}\right)$ memory solution
C. Crime
- Given n up to 28

C. Crime

- Given n up to 28
- Find number of different permutations
- Of length n
- Every two consecutive elements are coprime

C. Crime

Solution

- For each x we are interested in the subset of $[1 \ldots n]$, so that x is coprime to them

C. Crime

Solution

- For each x we are interested in the subset of $[1 \ldots n]$, so that x is coprime to them
- Build equivalence classes on that criteria

C. Crime

Solution

- For each x we are interested in the subset of $[1 \ldots n]$, so that x is coprime to them
- Build equivalence classes on that criteria
- Based on these equivalence classes count number of different multisets of classes
- There are 1728000 of those

C. Crime

Solution

- For each x we are interested in the subset of $[1 \ldots n]$, so that x is coprime to them
- Build equivalence classes on that criteria
- Based on these equivalence classes count number of different multisets of classes
- There are 1728000 of those
- Make dynamic programming

D. Endless spin

- You are given n white balls

D. Endless spin

- You are given n white balls
- In one turn you choose (I, r), so that $1 \leqslant I \leqslant r \leqslant n$ equiprobably

D. Endless spin

- You are given n white balls
- In one turn you choose (I, r), so that $1 \leqslant I \leqslant r \leqslant n$ equiprobably
- Color each ball x, such that $I \leqslant x \leqslant r$, to black

D. Endless spin

- You are given n white balls
- In one turn you choose (I, r), so that $1 \leqslant I \leqslant r \leqslant n$ equiprobably
- Color each ball x, such that $I \leqslant x \leqslant r$, to black
- What is the expected number of turns, so that every ball is colored?

D. Endless spin

Solution

- Answer is $\sum_{i=0}^{+\infty} p(i)$
- $p(x)$ is the probability, that in x moves there exists a white ball

D. Endless spin

Solution

- Answer is $\sum_{i=0}^{+\infty} p(i)$
- $p(x)$ is the probability, that in x moves there exists a white ball
- How to calculate $p(x)$?

D. Endless spin

Solution

- Answer is $\sum_{i=0}^{+\infty} p(i)$
- $p(x)$ is the probability, that in x moves there exists a white ball
- How to calculate $p(x)$?
- d_{A} is the probability to leave A white in x moves

D. Endless spin

Solution

- Answer is $\sum_{i=0}^{+\infty} p(i)$
- $p(x)$ is the probability, that in x moves there exists a white ball
- How to calculate $p(x)$?
- d_{A} is the probability to leave A white in x moves
- Choosing these intervals will color some subset of \bar{A}

D. Endless spin

Solution

- Answer is $\sum_{i=0}^{+\infty} p(i)$
- $p(x)$ is the probability, that in x moves there exists a white ball
- How to calculate $p(x)$?
- d_{A} is the probability to leave A white in x moves
- Choosing these intervals will color some subset of \bar{A}
- Use inclusion-exclusion formula

D. Endless spin

Solution

- Answer is $\sum_{i=0}^{+\infty} p(i)$
- $p(x)$ is the probability, that in x moves there exists a white ball
- How to calculate $p(x)$?
- d_{A} is the probability to leave A white in x moves
- Choosing these intervals will color some subset of \bar{A}
- Use inclusion-exclusion formula
- Probability to color all balls in x moves $\sum_{A} d_{A} \cdot(-1)^{|A|}$

D. Endless spin

Solution

- Answer is $\sum_{i=0}^{+\infty} p(i)$
- $p(x)$ is the probability, that in x moves there exists a white ball
- How to calculate $p(x)$?
- d_{A} is the probability to leave A white in x moves
- Choosing these intervals will color some subset of \bar{A}
- Use inclusion-exclusion formula
- Probability to color all balls in x moves $\sum_{A} d_{A} \cdot(-1)^{|A|}$
- c_{A} is the number of intervals that cover only balls from \bar{A}

D. Endless spin

Solution

- Answer is $\sum_{i=0}^{+\infty} p(i)$
- $p(x)$ is the probability, that in x moves there exists a white ball
- How to calculate $p(x)$?
- d_{A} is the probability to leave A white in x moves
- Choosing these intervals will color some subset of \bar{A}
- Use inclusion-exclusion formula
- Probability to color all balls in x moves $\sum_{A} d_{A} \cdot(-1)^{|A|}$
- c_{A} is the number of intervals that cover only balls from \bar{A}
- Then $d_{A}=\left(\frac{c_{A}}{\binom{n+1}{2}}\right)^{x}$

D. Endless spin

Solution

- Answer is $\sum_{i=0}^{+\infty} p(i)$
- $p(x)$ is the probability, that in x moves there exists a white ball
- How to calculate $p(x)$?
- d_{A} is the probability to leave A white in x moves
- Choosing these intervals will color some subset of \bar{A}
- Use inclusion-exclusion formula
- Probability to color all balls in x moves $\sum_{A} d_{A} \cdot(-1)^{|A|}$
- c_{A} is the number of intervals that cover only balls from \bar{A}
- Then $d_{A}=\left(\frac{c_{A}}{\binom{n+1}{2}}\right)^{x}$
- So answer is $\sum_{i=0}^{+\infty}\left(1-\sum_{A}(-1)^{|A|}\left(\frac{c_{A}}{\binom{n+1}{2}}\right)^{i}\right)$

D. Endless spin

Solution

- We know that $d_{\varnothing}=1$, so:
- Answer is: $\sum_{i=0}^{+\infty} \sum_{A \neq \varnothing}(-1)^{|A|}\left(\frac{c_{A}}{\binom{n+1}{2}}\right)^{i}$
- Change the order $\sum_{A \neq \varnothing}(-1)^{|A|} \sum_{i=0}^{+\infty}\left(\frac{c_{A}}{\binom{+1}{2}}\right)^{i}$

D. Endless spin

Solution

- We know that $d_{\varnothing}=1$, so:
- Answer is: $\sum_{i=0}^{+\infty} \sum_{A \neq \varnothing}(-1)^{|A|}\left(\frac{c_{A}}{\binom{n+1}{2}}\right)^{i}$
- Change the order $\sum_{A \neq \varnothing}(-1)^{|A|} \sum_{i=0}^{+\infty}\left(\frac{c_{A}}{\binom{n+1}{2}}\right)^{i}$
- It's 2^{n} geometric series sums

D. Endless spin

Solution

- We know that $d_{\varnothing}=1$, so:
- Answer is: $\sum_{i=0}^{+\infty} \sum_{A \neq \varnothing}(-1)^{|A|}\left(\frac{c_{A}}{\binom{n+1}{2}}\right)^{i}$
- Change the order $\sum_{A \neq \varnothing}(-1)^{|A|} \sum_{i=0}^{+\infty}\left(\frac{c_{A}}{\binom{n+1}{2}}\right)^{i}$
- It's 2^{n} geometric series sums
- For every c_{A} and $(|A| \bmod 2)$ calculate the number of such A

D. Endless spin

Solution

- We know that $d_{\varnothing}=1$, so:
- Answer is: $\sum_{i=0}^{+\infty} \sum_{A \neq \varnothing}(-1)^{|A|}\left(\frac{c_{A}}{\binom{n+1}{2}}\right)^{i}$
- Change the order $\sum_{A \neq \varnothing}(-1)^{|A|} \sum_{i=0}^{+\infty}\left(\frac{c_{A}}{\binom{n+1}{2}}\right)^{i}$
- It's 2^{n} geometric series sums
- For every c_{A} and $(|A| \bmod 2)$ calculate the number of such A
- As an exercise come up with dynamic programming polynomial solution to do that

E. JZPTREE

- You are given a tree

E. JZPTREE

- You are given a tree
- Number of vertices is at most 50000

E. JZPTREE

- You are given a tree
- Number of vertices is at most 50000
- Calculate for each vertex v :

E. JZPTREE

- You are given a tree
- Number of vertices is at most 50000
- Calculate for each vertex v :
- $\sum_{u} d_{v, u}^{k}$

E. JZPTREE

- You are given a tree
- Number of vertices is at most 50000
- Calculate for each vertex v :
- $\sum_{u} d_{v, u}^{k}$
- $d_{x, y}$ is the distance from v to u

E. JZPTREE

- You are given a tree
- Number of vertices is at most 50000
- Calculate for each vertex v :
- $\sum_{u} d_{v, u}^{k}$
- $d_{x, y}$ is the distance from v to u
- k is up to 50

E. JZPTREE

Solution

- Formula using Stirling numbers of second kind:
- $d^{k}=\sum_{i=0}^{k} S(k, i) \cdot d \cdot(d-1) \cdots \cdot(d-i+1)$
- $d^{k}=\sum_{i=0}^{k} S(k, i) \cdot\binom{d}{i} \cdot i!$
- $S(k, i)$ is the Stirling number of second kind
- The number of ways to color k element set into i colors

E. JZPTREE

Solution

- Formula using Stirling numbers of second kind:
- $d^{k}=\sum_{i=0}^{k} S(k, i) \cdot d \cdot(d-1) \cdots \cdot(d-i+1)$
- $d^{k}=\sum_{i=0}^{k} S(k, i) \cdot\binom{d}{i} \cdot i!$
- $S(k, i)$ is the Stirling number of second kind
- The number of ways to color k element set into i colors
- So for every vertex v calculate array a :
- $a_{i}=\sum_{u}\binom{d_{v, u}}{i}$

E. JZPTREE

Solution

- Formula using Stirling numbers of second kind:
- $d^{k}=\sum_{i=0}^{k} S(k, i) \cdot d \cdot(d-1) \cdots \cdot(d-i+1)$
- $d^{k}=\sum_{i=0}^{k} S(k, i) \cdot\binom{d}{i} \cdot i!$
- $S(k, i)$ is the Stirling number of second kind
- The number of ways to color k element set into i colors
- So for every vertex v calculate array a :
- $a_{i}=\sum_{u}\binom{d_{v, u}}{i}$
- To add one edge, one has to increase every $d_{v, u}$ by one
- $\binom{d+1}{i}=\binom{d}{i}+\binom{d}{i-1}$
- $a_{i}^{\text {new }}=a_{i}+a_{i-1}$

E. JZPTREE

Solution

- To calculate a first make tree rooted
- Sum up all $\binom{d}{i}$ over all descendants first
- Then sum up all $\binom{d}{i}$ for not descendants by second DFS

E. JZPTREE

Solution

- To calculate a first make tree rooted
- Sum up all $\binom{d}{i}$ over all descendants first
- Then sum up all $\binom{d}{i}$ for not descendants by second DFS
- Calculate a for all vertices in $O(n k)$ time

E. JZPTREE

Solution

- To calculate a first make tree rooted
- Sum up all $\binom{d}{i}$ over all descendants first
- Then sum up all $\binom{d}{i}$ for not descendants by second DFS
- Calculate a for all vertices in $O(n k)$ time
- Calculate $S(i, j)$ and i !

E. JZPTREE

Solution

- To calculate a first make tree rooted
- Sum up all $\binom{d}{i}$ over all descendants first
- Then sum up all $\binom{d}{i}$ for not descendants by second DFS
- Calculate a for all vertices in $O(n k)$ time
- Calculate $S(i, j)$ and $i!$
- Use formula to get answer for every vertex

F. Jinkeloid

- You are given a string s of length up to 10^{5}

F. Jinkeloid

- You are given a string s of length up to 10^{5}
- String consists of first 20 letters of alphabet

F. Jinkeloid

- You are given a string s of length up to 10^{5}
- String consists of first 20 letters of alphabet
- Answer queries:
- Given $c_{1}, c_{2}, \ldots c_{k}$ - letters
- $k \leqslant 5$

F. Jinkeloid

- You are given a string s of length up to 10^{5}
- String consists of first 20 letters of alphabet
- Answer queries:
- Given $c_{1}, c_{2}, \ldots c_{k}$ - letters
- $k \leqslant 5$
- Find number of pairs (i, j), so that $s(i, j)$ contains even number of each of these k letters

F. Jinkeloid

Solution

- For each prefix $0 \leqslant i \leqslant|s|$ find subset p_{i} : - which letters enter odd number of times

F. Jinkeloid

Solution

- For each prefix $0 \leqslant i \leqslant|s|$ find subset p_{i} :
- which letters enter odd number of times
- For substring $s(i+1, j)$ we have to calculate $p_{i} \oplus p_{j}$

F. Jinkeloid

Solution

- For each prefix $0 \leqslant i \leqslant|s|$ find subset p_{i} :
- which letters enter odd number of times
- For substring $s(i+1, j)$ we have to calculate $p_{i} \oplus p_{j}$
- Calculate f_{A} - number of i such that $p_{i}=A$

F. Jinkeloid

Solution

- For each prefix $0 \leqslant i \leqslant|s|$ find subset p_{i} :
- which letters enter odd number of times
- For substring $s(i+1, j)$ we have to calculate $p_{i} \oplus p_{j}$
- Calculate f_{A} - number of i such that $p_{i}=A$
- Calculate $g_{A}=\sum_{A \subset B} f_{B}$
- It's just partial sums on $2 \times 2 \times \ldots \times 2$ array
- Calculated in $O\left(2^{|\Sigma|}|\Sigma|\right)$

F. Jinkeloid

Solution

- To answer the queries:
- p_{i} and p_{j} have to have equal parity for letters in query

F. Jinkeloid

Solution

- To answer the queries:
- p_{i} and p_{j} have to have equal parity for letters in query
- For each X of 2^{k} parities of given k letters get g_{A}
- A contains only letters from query
- Calculate $d_{X}=g_{A}$

F. Jinkeloid

Solution

- To answer the queries:
- p_{i} and p_{j} have to have equal parity for letters in query
- For each X of 2^{k} parities of given k letters get g_{A}
- A contains only letters from query
- Calculate $d_{X}=g_{A}$
- Use inclusion-exclusion formula
- for $X=\left(2^{k}-1\right) \ldots 0$:
for $Y \supset X$:
$d_{X}:=d_{X}-d_{Y}$
- d_{X} is number of p_{i}, so that given letters' parity is X and the other letters' parity is either odd or even

F. Jinkeloid

Solution

- To answer the queries:
- p_{i} and p_{j} have to have equal parity for letters in query
- For each X of 2^{k} parities of given k letters get g_{A}
- A contains only letters from query
- Calculate $d_{X}=g_{A}$
- Use inclusion-exclusion formula
- for $X=\left(2^{k}-1\right) \ldots 0$:
for $Y \supset X$:
$d_{X}:=d_{X}-d_{Y}$
- d_{X} is number of p_{i}, so that given letters' parity is X and the other letters' parity is either odd or even
- Answer is $\sum_{x} \frac{d_{x}\left(d_{x}-1\right)}{2}$

G. Unsolvable Problem

- Given n up to 10^{9}
- Find positive a and b such that
(1) $a+b=n$
(2) $\operatorname{lcm}(a, b)$ is maximum possible

G. Unsolvable Problem

Solution

$$
\text { - If } x>y \text { and } d>0 \text {, then } x y \geqslant(x+d)(y-d)
$$

G. Unsolvable Problem

Solution

- If $x>y$ and $d>0$, then $x y \geqslant(x+d)(y-d)$
- p equal to smallest prime greater than $\frac{n}{2}$
- It's coprime to $n-p$, since $n-p<p$

G. Unsolvable Problem

Solution

- If $x>y$ and $d>0$, then $x y \geqslant(x+d)(y-d)$
- p equal to smallest prime greater than $\frac{n}{2}$
- It's coprime to $n-p$, since $n-p<p$
- So answer is not less than $(n-p) p$

G. Unsolvable Problem

Solution

- If $x>y$ and $d>0$, then $x y \geqslant(x+d)(y-d)$
- p equal to smallest prime greater than $\frac{n}{2}$
- It's coprime to $n-p$, since $n-p<p$
- So answer is not less than $(n-p) p$
- You don't have to look to $x>p$

G. Unsolvable Problem

Solution

- If $x>y$ and $d>0$, then $x y \geqslant(x+d)(y-d)$
- p equal to smallest prime greater than $\frac{n}{2}$
- It's coprime to $n-p$, since $n-p<p$
- So answer is not less than $(n-p) p$
- You don't have to look to $x>p$
- Gap between prime numbers is small enough to try every $\frac{n}{2}<x \leqslant p$
- Given a string of length not greater than 16
- In one move you can erase any subsequence, that is palindrome
- Find minimum number of moves to erase all string

H. Pieces

Solution

- For every of $2^{n}-1$ subsequences calculate if it's palindrome

H. Pieces

Solution

- For every of $2^{n}-1$ subsequences calculate if it's palindrome - Let P be the set of all palindrome subsequences

H. Pieces

Solution

- For every of $2^{n}-1$ subsequences calculate if it's palindrome - Let P be the set of all palindrome subsequences
- $f[A]$ - minimum number of moves to erase subset A

H. Pieces

Solution

- For every of $2^{n}-1$ subsequences calculate if it's palindrome - Let P be the set of all palindrome subsequences
- $f[A]$ - minimum number of moves to erase subset A
- $f[A]=\min _{B \in P \wedge B \subset A} f[B]+1$

H. Pieces

Solution

- For every of $2^{n}-1$ subsequences calculate if it's palindrome - Let P be the set of all palindrome subsequences
- $f[A]$ - minimum number of moves to erase subset A
- $f[A]=\min _{B \in P \wedge B \subset A} f[B]+1$
- Calculated in $O\left(3^{n}\right)$
I. Burning
- You are given triangles
- For every k find the area of a plane covered by exactly k triangles

I. Burning

Solution

- Intersect all pairs of sides of all triangles

I. Burning

Solution

- Intersect all pairs of sides of all triangles
- Get all x-coordinates of all intersection and all vertices
- $x_{1}<x_{2}<\cdots<x_{k}$ be those coordinates

I. Burning

Solution

- Intersect all pairs of sides of all triangles
- Get all x-coordinates of all intersection and all vertices
- $x_{1}<x_{2}<\cdots<x_{k}$ be those coordinates
- Consider the part of plane with points (x, y) such that $x_{i}<x<x_{i+1}$

I. Burning

Solution

- Intersect all pairs of sides of all triangles
- Get all x-coordinates of all intersection and all vertices
- $x_{1}<x_{2}<\cdots<x_{k}$ be those coordinates
- Consider the part of plane with points (x, y) such that $x_{i}<x<x_{i+1}$
- Intersection of this part of plane with every triangle is either empty set or trapezoid

I. Burning

Solution

- Intersect all pairs of sides of all triangles
- Get all x-coordinates of all intersection and all vertices
- $x_{1}<x_{2}<\cdots<x_{k}$ be those coordinates
- Consider the part of plane with points (x, y) such that $x_{i}<x<x_{i+1}$
- Intersection of this part of plane with every triangle is either empty set or trapezoid
- No two non-vertical trapezoid sides intersect
I. Burning

Solution

- Intersect every side of triangle with this part of the plane

Solution

- Intersect every side of triangle with this part of the plane
- Get middle point of intersection

I. Burning

Solution

- Intersect every side of triangle with this part of the plane
- Get middle point of intersection
- Sort all segments by y-coordinate of this middle point

I. Burning

Solution

- Intersect every side of triangle with this part of the plane
- Get middle point of intersection
- Sort all segments by y-coordinate of this middle point
- Do another sweepline iterating over segments

I. Burning

Solution

- Intersect every side of triangle with this part of the plane
- Get middle point of intersection
- Sort all segments by y-coordinate of this middle point
- Do another sweepline iterating over segments
- Each segment is either the start of a triangle or the end
- Keep track of k - number of triangles covering

I. Burning

Solution

- Intersect every side of triangle with this part of the plane
- Get middle point of intersection
- Sort all segments by y-coordinate of this middle point
- Do another sweepline iterating over segments
- Each segment is either the start of a triangle or the end
- Keep track of k - number of triangles covering
- Calculate trapezoid area and add it to corresponding answer

J. No Pain No Game

- You are given n natural numbers $(n \leqslant 50000)$

J. No Pain No Game

- You are given n natural numbers ($n \leqslant 50000$)
- Each number is not greater than 50000

J. No Pain No Game

- You are given n natural numbers ($n \leqslant 50000$)
- Each number is not greater than 50000
- You are also given queries:
- Each consists of L and R

J. No Pain No Game

- You are given n natural numbers ($n \leqslant 50000$)
- Each number is not greater than 50000
- You are also given queries:
- Each consists of L and R
- Find pair (i, j) such that $i \neq j$ and $L \leqslant i, j \leqslant R$

J. No Pain No Game

- You are given n natural numbers $(n \leqslant 50000)$
- Each number is not greater than 50000
- You are also given queries:
- Each consists of L and R
- Find pair (i, j) such that $i \neq j$ and $L \leqslant i, j \leqslant R$
- And $\operatorname{gcd}\left(a_{i}, a_{j}\right)$ is maximum possible

J. No Pain No Game

Solution

- Let's answer all queries in order of increasing R

J. No Pain No Game

Solution

- Let's answer all queries in order of increasing R
- Consider gcd is equal to v

J. No Pain No Game

Solution

- Let's answer all queries in order of increasing R
- Consider gcd is equal to v
- Consider rightmost two positions $i<j \leqslant R$:
- so that $v \mid a_{i}$ and $v \mid a_{j}$

J. No Pain No Game

Solution

- Let's answer all queries in order of increasing R
- Consider gcd is equal to v
- Consider rightmost two positions $i<j \leqslant R$:
- so that $v \mid a_{i}$ and $v \mid a_{j}$
- For every $L \leqslant i$ answer is at least v

J. No Pain No Game

Solution

- Let's answer all queries in order of increasing R
- Consider gcd is equal to v
- Consider rightmost two positions $i<j \leqslant R$:
- so that $v \mid a_{i}$ and $v \mid a_{j}$
- For every $L \leqslant i$ answer is at least v
- For every $1 \leqslant i \leqslant R$ store the maximum possible divisor of a_{i}

J. No Pain No Game

Solution

- Let's answer all queries in order of increasing R
- Consider gcd is equal to v
- Consider rightmost two positions $i<j \leqslant R$:
- so that $v \mid a_{i}$ and $v \mid a_{j}$
- For every $L \leqslant i$ answer is at least v
- For every $1 \leqslant i \leqslant R$ store the maximum possible divisor of a_{i}
- Such v, so that there is $j>i$ and $j \leqslant R$
- And $v \mid a_{j}$

J. No Pain No Game

Solution

- Let's answer all queries in order of increasing R
- Consider gcd is equal to v
- Consider rightmost two positions $i<j \leqslant R$:
- so that $v \mid a_{i}$ and $v \mid a_{j}$
- For every $L \leqslant i$ answer is at least v
- For every $1 \leqslant i \leqslant R$ store the maximum possible divisor of a_{i}
- Such v, so that there is $j>i$ and $j \leqslant R$
- And $v \mid a_{j}$
- Keep track of interval tree or binary indexed tree, say t

J. No Pain No Game

Solution

- Let's answer all queries in order of increasing R
- Consider gcd is equal to v
- Consider rightmost two positions $i<j \leqslant R$:
- so that $v \mid a_{i}$ and $v \mid a_{j}$
- For every $L \leqslant i$ answer is at least v
- For every $1 \leqslant i \leqslant R$ store the maximum possible divisor of a_{i}
- Such v, so that there is $j>i$ and $j \leqslant R$
- And $v \mid a_{j}$
- Keep track of interval tree or binary indexed tree, say t
- Keep track of last number, that is divisible by each v

J. No Pain No Game

Solution

- Let's answer all queries in order of increasing R
- Consider gcd is equal to v
- Consider rightmost two positions $i<j \leqslant R$:
- so that $v \mid a_{i}$ and $v \mid a_{j}$
- For every $L \leqslant i$ answer is at least v
- For every $1 \leqslant i \leqslant R$ store the maximum possible divisor of a_{i}
- Such v, so that there is $j>i$ and $j \leqslant R$
- And $v \mid a_{j}$
- Keep track of interval tree or binary indexed tree, say t
- Keep track of last number, that is divisible by each v
- To increase R by one, iterate over all $v \mid a_{R}$
- Make $\mathrm{t}[\mathrm{last}[\mathrm{v}]]:=\max (\mathrm{t}[$ last $[\mathrm{v}]], \mathrm{v})$
- Update last [v] := R

J. No Pain No Game

Solution

- Let's answer all queries in order of increasing R
- Consider gcd is equal to v
- Consider rightmost two positions $i<j \leqslant R$:
- so that $v \mid a_{i}$ and $v \mid a_{j}$
- For every $L \leqslant i$ answer is at least v
- For every $1 \leqslant i \leqslant R$ store the maximum possible divisor of a_{i}
- Such v, so that there is $j>i$ and $j \leqslant R$
- And $v \mid a_{j}$
- Keep track of interval tree or binary indexed tree, say t
- Keep track of last number, that is divisible by each v
- To increase R by one, iterate over all $v \mid a_{R}$
- Make $\mathrm{t}[\mathrm{last}[\mathrm{v}]$] := $\max (\mathrm{t}[$ last [v]], v$)$
- Update last[v] := R
- Answer for query (L, R) is maximum in $t[L \ldots R]$

K. Sad Love Story

- You are given sequence of n points
- n is at most $5 \cdot 10^{5}$

K. Sad Love Story

- You are given sequence of n points
- n is at most $5 \cdot 10^{5}$
- Points are generated pseudorandomly
- With coordinates up to n

K. Sad Love Story

- You are given sequence of n points
- n is at most $5 \cdot 10^{5}$
- Points are generated pseudorandomly
- With coordinates up to n
- After each point answer, what is the distance between closest two points?

K. Sad Love Story

Solution

- Maintain sorted by x-coordinate array of all already added points

K. Sad Love Story

Solution

- Maintain sorted by x-coordinate array of all already added points
- When new $\left(x_{0}, y_{0}\right)$ point added:
- Let d be the current answer

K. Sad Love Story

Solution

- Maintain sorted by x-coordinate array of all already added points
- When new $\left(x_{0}, y_{0}\right)$ point added:
- Let d be the current answer
- Check all points (x, y) such that $\left|x-x_{0}\right|<d$
- Other points are not closer than d

K. Sad Love Story

Solution

- Maintain sorted by x-coordinate array of all already added points
- When new $\left(x_{0}, y_{0}\right)$ point added:
- Let d be the current answer
- Check all points (x, y) such that $\left|x-x_{0}\right|<d$
- Other points are not closer than d
- Update answer by distance to these points

K. Sad Love Story

Solution

- Intuitively the runtime is explained like this:
- Consider we added p points to our set

K. Sad Love Story

Solution

- Intuitively the runtime is explained like this:
- Consider we added p points to our set
- Let's make $r \times r$ grid of $[1 \ldots n] \times[1 \ldots n]$ square

K. Sad Love Story

Solution

- Intuitively the runtime is explained like this:
- Consider we added p points to our set
- Let's make $r \times r$ grid of $[1 \ldots n] \times[1 \ldots n]$ square
- Choose r such that the probability of two points locating in the same cell is at least $\frac{1}{2}$

K. Sad Love Story

Solution

- Intuitively the runtime is explained like this:
- Consider we added p points to our set
- Let's make $r \times r$ grid of $[1 \ldots n] \times[1 \ldots n]$ square
- Choose r such that the probability of two points locating in the same cell is at least $\frac{1}{2}$
- Birthday paradox says that number of cells can be quadratic of p, so $r \approx p$

K. Sad Love Story

Solution

- Intuitively the runtime is explained like this:
- Consider we added p points to our set
- Let's make $r \times r$ grid of $[1 \ldots n] \times[1 \ldots n]$ square
- Choose r such that the probability of two points locating in the same cell is at least $\frac{1}{2}$
- Birthday paradox says that number of cells can be quadratic of p, so $r \approx p$
- So expected number of points in $x_{0}-d<x<x_{0}+d$ is $\frac{2 p d}{n}$

K. Sad Love Story

Solution

- Intuitively the runtime is explained like this:
- Consider we added p points to our set
- Let's make $r \times r$ grid of $[1 \ldots n] \times[1 \ldots n]$ square
- Choose r such that the probability of two points locating in the same cell is at least $\frac{1}{2}$
- Birthday paradox says that number of cells can be quadratic of p, so $r \approx p$
- So expected number of points in $x_{0}-d<x<x_{0}+d$ is $\frac{2 p d}{n}$
- $d \approx \frac{n}{r} \approx \frac{n}{p}$
- Expected number of points is $\frac{2 p d}{n} \approx 2 \frac{\frac{n}{p} p}{n}=2$

K. Sad Love Story

Solution

- Intuitively the runtime is explained like this:
- Consider we added p points to our set
- Let's make $r \times r$ grid of $[1 \ldots n] \times[1 \ldots n]$ square
- Choose r such that the probability of two points locating in the same cell is at least $\frac{1}{2}$
- Birthday paradox says that number of cells can be quadratic of p, so $r \approx p$
- So expected number of points in $x_{0}-d<x<x_{0}+d$ is $\frac{2 p d}{n}$
- $d \approx \frac{n}{r} \approx \frac{n}{p}$
- Expected number of points is $\frac{2 p d}{n} \approx 2 \frac{\frac{n}{p} p}{n}=2$
- So summing up over all p, we get $O(n)$ runtime

