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Abs t rac t .  Suppose one has a line segment arrangement consisting en- 
tirely of vertical and horizontal segments,  and one wants  to find the 
shortest path from one point to another along these segments .  Using 
known algorithms one can solve this in O(n 2) time and in O(n 2) space. 
We show that it is possible to find a shortest path in time O(n 15 log n) 
and space 0(n15). Furthermore, if only one path endpoint is known in 
advance, it is possible to preprocess the arrangement in the same time 
and space and then find shortest paths for query points in time O(log n). 

1 I n t r o d u c t i o n  

Consider the problem of finding the shortest path from one location to another 
in a large city. Many cities have two sets of parallel streets, where the streets 
of one set are perpendicular to the streets of the other. These streets may have 
sections closed or there may be points where the streets do not go through. 

Geometrically, we can represent the city streets as line segments, with end- 
points where the streets do not go through. What  we have is an arrangement of 
horizontal and vertical line segments. We would like to find a shortest path from 
one point on some segment to another point on another segment. 

There are many other routing problems that  fit this model, such as rout- 
ing pipes and wiring in a building, routing utility lines in a city, and routing 
connections on a circuit board. 

One field in particular where this problem has application is VLSI design. In 
VLSI design, one has a set of cells, which represent logic elements in the circuit 
and which have fixed locations. In between cells, one has vertical and horizontal 
channels where one can route connections. The cost of the connection is the path 
length, so one wants to minimize path lengths in this arrangement of vertical 
and horizontal segments. 

De Rezende et al. [8] study a related problem of finding a rectilinear shortest 
path from one point to another in a region where there are obstacles consisting 
of disjoint, axis parallel rectangles. The constraint is that  the path must not pass 
through the rectangles. For this problem, the authors give a solution that  takes 
O(n log n) preprocessing time, given the path starting point, and O(log n) time 
per query for each path ending point. 

Their  problem is less general, requiring that  the obstacles be disjoint rectan- 
gles. For the problem presented here of an arrangement of segments, we make 
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no assumptions about what obstacles or other constraints end each segment; we 
allow any set of vertical and horizontal segments. 

The problem discussed here is also related to other problems in computational 
geometry. The first is, given an arrangement consisting of line segments with 
O(1) different orientations, find a shortest path between two points. We have not 
found an easy way to extend the methods of this paper to solve this problem. 
The second, more general problem is, given any arrangement of lines, find a 
shortest path between two points in less than O(n 2) time and space. Both of 
these problems remain open. Bose et al. [2] describe a method for approximating 
the shortest path in a line arrangement. 

Returning to the problem discussed in this paper: one can solve this using 
known algorithms as follows. Given n line segments, we can compute the arrange- 
ment for these segments in time O(n2). The arrangement has O(n 2) vertices. An 
algorithm by Klein, et al. [5] computes shortest paths in a planar graph in linear 
time. Using this gives a time of O(n ~) to find a shortest path. 

We would like to improve this time, but of perhaps greater concern is that this 
approach also takes O(n 2) space. We show here that one can compute shortest 
paths faster and in less space. We describe an algorithm that computes a path 
in time O(n 15 log n) and space 0(n15). 

We also look at the case where only one path endpoint is known in advance. 
We show that one can preprocess the segments in the same time and space 
bounds, and one can then find a shortest path for query points in time O(log n). 

2 T h e  B a s i c  C o n c e p t  

The intuition for what our algorithm does is easy to describe. Consider first where 
the undesirable O(n 2) bound arises. We have only n lines, but these produce as 
many as n2/4 vertices at intersection points. For the number of intersection 
points to be large, each of the n lines must intersect most of the other n lines. 
If this were not the case, then there would be few intersection points, and we 
could solve the problem quickly. 

In an arrangement of vertical and horizontal segments, if one has most vertical 
lines intersecting most horizontal lines, the arrangement contains many regions 
like the one shown in Figure 1, where all vertical lines intersect all horizontal 
lines. Suppose there is a path starting point at one side of this region and a 
path destination point on another side. The algorithms described above look at 
paths going through all n 2 vertices and edges. But clearly there are very many 
different paths in this grid that are all equally good. An algorithm that checks 
all these paths is doing a tremendous amount of unnecessary work. 

2.1 A lgo r i t hm Overview 

It is possible to avoid looking at many of the vertices and edges in the arrange- 
ment. Consider a grid of lines and the rectangular shape consisting of the four 
outermost segments. If the path starts at one side of this rectangle and leaves 
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Fig. 1. A region where all vertical segments intersect all horizontal segments, defined 
here to be a complete grid. The bold lines are boundary segments and all other lines 
are interior segments. 

from a side with different orientation, then a path through the interior of the 
rectangle has corresponding to it an equMly short path traveling only on the 
outermost lines. If a path starts at one side of this rectangle and leaves from the 
opposite side, it may be necessary to travel through the interior of the rectangle, 
but  all of this travel can be on a single segment. 

Thus, the algorithm described here constructs a graph that  eliminates most 
of the intersection points and the corresponding, numerous edges, but the graph 
produced has a shortest path equal to the shortest path in the original arrange- 
ment. 

The algorithm finds regions where all vertical lines intersect all horizontal 
lines. It adds the outermost segments-- the boundary of a rectangle-- to the 
graph, including vertices at all intersections of these lines with other lines. It 
adds lines crossing the rectangle but omits vertices at the intersections of these 
lines with each other; this eliminates many of the intersection points found in 
the arrangement. 

2.2 D e f i n i t i o n s  

Suppose one can identify a rectangular region where every vertical line intersects 
every horizontal line. This region is what we term a complele grid (see Figure 1). 
A paper by Chan and Chin [3] uses a similar concept of complete grids. When 
our algorithm finds a complete grid, it adds all the line segments to the graph 
but  leaves out every intersection point in the interior of the rectangle. 

More precisely, the algorithm determines which four line segments are outer- 
most. These are what we term boundary lines. Every intersection of a line with 
a boundary line is included as a vertex of the graph. Every intersection point 
cuts line segments into pieces; these are edges of the graph. 

Lines in the complete grid other than boundary lines are what we term inte- 
rior lines. The algorithm does not include, as vertices of the graph, the intersec- 
tion points of interior lines with other interior lines. Each interior line becomes 
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three edges: the two fragments outside the rectangle and the one subsegment 
that crosses the interior of the rectangle (see Figure 1). 

A special case occurs if a path endpoint is located on a line segment of the 
complete grid. In this case, the algorithm treats this segment just like a boundary 
segment, including as vertices in the graph all intersection points of this segment 
with any other segments. 

One of the difficulties making this approach work is finding, in a complex 
arrangement of segments, regions that fit the description of a complete grid. The 
solution we describe uses a technique similar to that used in a paper by Bern, 
Dobkin, and Eppstein [1]. The algorithm finds and enlarges complete grids by 
looking in vertical strips of the arrangement that are V ~ vertical lines wide. 

It makes use of the fact that there are few (2n) segment endpoints in the 
arrangement. The only interruption of a complete grid that can occur is the 
start or end of a line segment. The algorithm enlarges grids until an endpoint 
interrupts its progress. The algorithm then adds the complete grid to the graph, 
and continues by finding the next complete grid. 

This produces a graph representing the arrangement, but unlike the naively 
constructed graph, this is not a planar graph. The previously mentioned algo- 
rithm by Klein et al. [5] works only for planar graphs. Thus, we apply Dijkstra's 
shortest path algorithm to our graph. 

2.3 Partit ioning the Rec tang le  

Before discussing the algorithm in detail, we discuss an abstraction that will aid 
precise mathematical analysis. Consider a rectangular region R of the plane de- 
fined by the extreme z and y values of all segment endpoints (and thus enclosing 
all segments). Imagine that all vertical line segments extend the full length of 
this rectangle. Choose vertical lines at intervals of v~,  including the left and 
right boundaries of the rectangle. These lines partition the rectangle into ver- 
tical strips. The vertical line segments on the boundary of each strip could be 
considered to belong to the strips on either side; we assign them to the strip on 
their left. 

Now imagine that, for each vertical strip, we sweep a horizontal line down 
the strip. Every time the sweep line intersects the endpoint of a vertical line, we 
add to the partition of R a horizontal segment across the strip. If the sweep line 
crosses a horizontal line extending all the way across the strip, we do nothing. If 
the line crosses a horizontal line segment with an endpoint in the strip, we add 
another partitioning horizontal segment. 

Doing this for each strip of the rectangle gives a partition of R into subrect- 
angles, where the interiors of the subrectangles are disjoint. The subrectangles 
will correspond to complete grids. The rectangles include and intersect at their 
boundary lines. Taking the intersection of each subrectangle with the set of line 
segments gives a set of subsegments. Since the union of the subrectangles equals 
rectangle R, the union of all subsegments in the subrectangles equals the set of 
line segments. 
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3 A l g o r i t h m  

The first step in the algorithm is to create an events list. We combine the lists of 
horizontal and vertical lines and sort them by y coordinate, where both endpoints 
of the vertical line segments count as events. 

We choose vertical line segments that are separated by ~ vertical line seg- 
ments. The vertical lines corresponding to these segments partition the rectangle 
into vertical strips. We will start with the leftmost vertical strip. We include any 
vertical line segment that is on a strip boundary as part of the vertical strip for 
which it is the right hand boundary. The algorithm processes all vertical strips 
going from left to right. 

The computations we do for a vertical strip are as follows. We have a hori- 
zontal sweep line travel down the vertical strip, stopping for each event on the 
event list. We will build up a set of line segments corresponding to a subrectan- 
gle in our previously described partition of rectangle R, and the line segments 
will satisfy the definition given earlier of a complete grid. The set of segments is 
initially empty at the top of each vertical strip. 

One event type is a horizontal line. If the horizontal line does not intersect 
the vertical strip, the algorithm does nothing. If the horizontal line segment 
extends the full width of the vertical strip, we add the line segment to a list 
of horizontal line segments in the current complete grid. If the horizontal line 
segment has one or both endpoints in the interior of the vertical strip, we define 
this segment to be a free segment, which is not part of the complete grid. This 
ends the complete grid, and we call the graph construction routine, providing 
the set of lines in the complete grid and the free segment as the parameters. 

The event encountered by the sweep line may be an endpoint of a vertical 
line segment. If so, we call the graph construction routine with the set of lines 
in the complete grid as the parameter. In this case, there is no free segment. 

After adding a complete grid, we reset the current list of lines. Doing this 
means setting the list of horizontal lines to null, and for the vertical lines, finding 
all line segments in the vertical strip that both intersect the horizontal sweep line 
and extend below it. This becomes the current set of lines for the next complete 
grid. 

We continue moving the sweep line until the next event is reached or we 
reach the end of the vertical strip. At the end of the strip, we call our routine for 
adding the current complete grid to the graph. We then start the sweep down 
the next vertical strip. 

3.1 Add ing  a Comple te  Gr id  to  the  G r a p h  

The part of the algorithm described above finds sets of lines that fit our definition 
of a complete grid. In this section we describe how the algorithm constructs a 
part of the graph containing all line segments in the complete grid. 

We use an adjacency list representation for the graph, and for each vertex 
we record its Cartesian coordinates. To add a complete grid, the algorithm con- 
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structs the graph by adding subsegments from the grid going from left to right 
and top to bottom. 

At any time in the construction of the graph, line segments may have subseg- 
ments that are represented in the graph and other subsegments that are to be 
added to the graph. Adding a complete grid to the graph may add subsegments 
from a segment already represented in the graph, or it may add entirely new sub- 
segments. Here we describe low level operations that are used in constructing 
the graph. 

The low level operations depend on what is already in the graph. Vertices in 
the graph may be one of two types. The first type is a vertex at the intersection 
of segments. These vertices, once placed in the graph, are never changed except 
to add edges. The second type of vertex is a subsegment endpoint; it is not at 
an intersection. If a colinear subsegment is to be added to the graph (that is, 
both subsegments are part of the same segment), the algorithm always moves 
the existing endpoint by changing the coordinates associated with it. The vertex 
becomes the endpoint of the new, longer subsegment. 

It may happen that a new vertex is at an intersection of two segments, 
and both segments have subsegments already in the graph. If both subsegments 
in the graph end in vertices that are not at intersections, one has a choice of 
which existing vertex to move. The algorithm picks one vertex. Since the other 
subsegment should be lengthened to end at this intersection, the vertex that is 
its endpoint is deleted and replaced by the newly moved vertex. 

Still considering a new vertex at an intersection, if exactly one of the sub- 
segments ends at an intersection point, the other vertex is moved. If both sub- 
segments end at intersection points, then a new vertex is added at the new 
intersection point. 

In summary, the low level operations for placing a vertex in the graph are to 
add, move, or move and delete vertices. 

4 Algorithm Running Time 

Here we analyze the running time of the algorithm. This has three components: 
the time for finding complete grids, the time for constructing a graph from the 
complete grids, and the time for applying Dijkstra's shortest paths algorithm to 
the graph. To determine how long Dijkstra's algorithm takes, we must bound 
the number of vertices and edges in the constructed graph. 

4.1 T ime  to F ind  Comple te  Grids  

The time for finding complete grids includes the time for sorting the events list 
and the time for passing a sweep line down V~ vertical strips processing events. 
Each event is simply to check whether endpoints are in the vertical strip, so each 
takes 0(1) time. There are O(n) events processed in each vertical strip, giving 
O(n 1"5) time spent looking at events. 
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For certain events, the algorithm adds or removes lines from the two linked 
lists of lines representing the complete grid. Horizontal lines are encountered in 
sorted order, so adding them to a sorted linked list takes constant time. This 
happens at most n times in a vertical strip, giving a bound of O(n 15) total time 
for these operations. 

Encountering vertical segment endpoints requires adding or removing vertical 
lines from the sorted linked list of vertical segments. The list may be as long as 
x/-~, and these events happen at most 2n times total in the algorithm. The total 
time for these operations is thus 0(n1"5). 

We conclude that  the time for finding complete grids is 0(n15). 

4.2 Graph Construction Time 

Here we look at the time it takes to construct the graph. We have the following 
lemma. 

L e m m a l .  The time for constructing the graph is 0(n15+ IVl). 

Proof sketch. In every step the algorithm adds subsegments to the graph, 
and to do this it adds new vertices, moves existing vertices, and deletes existing 
vertices. The addition, deletion, or move each take constant time once one has 
accessed the nearest vertices. The algorithm accesses vertices in the graph in 
order from left to right and top to bottom, so the algorithm takes constant time 
to access vertices. 

We now bound the total time of constructing the graph by charging the time 
of the low level operations (except moves) to vertices of the graph. 

If we add a vertex, we charge this constant time to the vertex. For deletions: 
any time we delete a vertex, it is because we have placed a vertex at the in- 
tersection of two subsegments. This vertex is never itself deleted or moved. We 
thus charge the cost of deleting a vertex to the vertex that  stays in the graph, 
and we also transfer the cost accrued to the deleted vertex (accrued when it was 
added to the graph) to the vertex that  stays in the graph. 

We next look at moving a vertex. Instead of charging this cost to vertices, we 
count the total number of moves possible. One can show that  the total number 
of move operations on all vertices is O(nl"~). 

We have shown that  the time for finding the complete grids is O(n1"5), the 
time for moving vertices as we construct the graph is 0(n1"5), and the time for 
adding and deleting vertices is O(IVI), proving the lemma. [] 

4.3 A B o u n d  on  t h e  N u m b e r  o f  Ver t ices  a n d  Edges  

We bound the total number of vertices and edges in the graph by determining 
how many intersection points the algorithm adds for all complete grids and free 
lines. The only other vertices in the graph are O(n) segment endpoints. 

In a vertical strip, a complete grid (and possibly a free line) is added to the 
graph whenever the algorithm encounters an endpoint of a line. Complete grids 
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are also added when the algorithm reaches the bottom of a vertical strip. There 
are only 2n line endpoints and ~ vertical strips, so the algorithm adds complete 
grids at most 2n + v/-ff times. 

A complete grid has (at most) 4 boundary lines. The horizontal boundary 
lines intersect no more than v/-ff vertical lines, so the complete grid horizontal 
boundary lines add at most this many intersection points. The vertical boundary 
lines can intersect up to n horizontal lines, but in fact the sum of intersections 
for all vertical boundary lines for all complete grids in the vertical strip is at 
most 2n. This is because at any point in the strip there are only two vertical 
boundary lines; except for the left/right pair, vertical boundary lines in the same 
strip do not overlap. 

Since there are 2 path endpoints, they add at most 2 segments for which all 
intersection points are added to the graph. Free lines (always horizontal) can 
intersect up to v/-ff vertical lines each. 

All intersection points of segments with other segments are accounted for in 
these computations since there are no interior to interior line intersection points. 

We add at most one free line each time we add a complete grid. The number 
of vertices added for horizontal segments for each complete grid is at most 3v~.  

Let ni be the number of complete grids in vertical strip i. Then the total 
number of intersection points in strip i is bounded by 3v/'ff ni + 2n. The total 
number of intersection points in all v/-ff strips (ignoring those added by segments 
containing path endpoints) is bounded by 

We stated above that ~ i  ni < 2n+v/-ff. This gives us a bound on intersection 
points of 

3V (2n + + 2nv  

Adding the intersections produced by boundary lines containing the path 
endpoints, we get 

IVl 3 (2n + + + 2n 
= O(n I'~) 

This lets us finish the work of bounding the time for constructing the graph with 
the following theorem. 

T h e o r e m 2 .  This algorithm takes O(n 1"5) time to construct a graph. 

The number of edges in the constructed graph is bounded by 4 times the 
number of intersection points plus (in case there are no intersection points) the 
number of line segments; this gives O(n 1"5) edges. Applying Dijkstra's single 
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source shortest paths algorithm to this graph, we compute a shortest path in 
time 

o(Ivl log IvI + IEI) 
= O(n15 log(n15) + .1.5) 
= O(n 1"5 log n) 

We state this as a theorem. 

T h e o r e m 3 .  The constructed graph requires O(n 15) space, and a shortest path 
in it can be computed in time O(n 1~ log n). 

5 P a t h s  i n  t h e  C o n s t r u c t e d  G r a p h  

Here we prove that  the shortest path in the original arrangement G has an 
equally short path in the constructed graph G ~. 

L e m m a 4 .  The constructed graph G j contains edges representing all line seg- 
ments in the the arrangement G and vertices for all intersection points except 
interior to interior line intersections. 

This follows from the manner of constructing G ~, and the proof is omitted. 

T h e o r e m 5 .  Suppose one is given an arrangement of vertical and horizontal 
segments G and points s and t in it. I f  G ~ is the graph constructed by the algo- 
rithm described above, then G ~ contains a path PI between s and t with weight 
equal to the shortest path P in G. 

Proof. We first need to explain some terminology. We say that  a path crosses 
through a vertex v if it goes from one line segment to a different line segment 
through intersection point v. If the path goes through a vertex but  continues on 
what, in the arrangement, is the same line segment, then we say that  the path 
does not cross through the vertex. 

Let P be a shortest path in the arrangement G. By our lemma, G ~ contains 
all segments found in G. If P crosses through only vertices found in G ~, then the 
same path exists in G ~, so we have nothing to prove. 

Suppose instead that  P crosses through some vertex (or vertices) not found 
in G I. Then, since G ~ does not contain a vertex at this intersection point, a path 
cannot go from one line segment to another, so the same path cannot exist in G~. 
Let S be the set of vertices that  P crosses through that  are not in G r. Choose 
one vertex v from S. 

By the lemma above, G ~ contains every vertex contained in G except vertices 
at the intersection of interior lines with interior lines. Since the vertex v is not 
in G ~, it is at an intersection of interior lines. Note also that  the omit ted vertices 
are always at intersections of interior line segments from the same complete grid. 
Thus we can say that  v belongs to a complete grid. 
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In the complete grid, the outermost line segments are designated as boundary 
segments. The four (at most) boundary segments define a rectangle; we denote 
this rectangle, including its interior, by r. (If there are fewer than four boundary 
segments, there is no enclosed region and so no interior.) 

In the remainder of the proof we consider three cases, depending upon whether 
the path endpoints s and t are inside the rectangle r bounded by boundary seg- 
ments. These are (1) both path endpoints s and t are exterior to or on the 
boundary of r, (2) one of s or t is in r, and (3) both path endpoints are in r. 

Case  1 Suppose that  both path endpoints s and t are exterior to or on the 
boundary of rectangle r. Consider vertex v from set S: by the definitions of 
boundary lines and interior lines, v is inside r. 

Since neither s nor t is inside rectangle r, there must be some first point Pz 
(starting from endpoint s) where P intersects the boundary of r and some last 
point p2 where P ends travel on the boundary of r, never again intersecting r. 
(These points may be s or t.) 

The first possibility is that  one of these crossing points (say WLOG Pl) is on 
a horizontal boundary line hi and the other point P2 is on a vertical boundary 
line v2. Then there is no shorter path from pl to P2 than plhlvlp2. (We describe 
paths by listing both points and line segments on the path.) Thus we can replace 
the part of P from Pl to P2 with this subpath and we have at least as good a 
path as P.  

This new path does not travel through the interior of r, and in particular it 
does not cross through vertex v. The number of interior to interior intersection 
points crossed through (the vertices of S) has decreased by at least one. 

The second possibility is that  both of the intersection points are on vertical 
boundary lines Vl and v~. The intersection at vertex v involves some horizontal 
line hi.  No path from Pl to P2 that travels through any point of hi is shorter 
than plvlhlv2p2. 

Thus we can replace the subpath of P from pl to p2 with this path and 
have a new path that  is at least as good. The new path reduces the number of 
cross-through vertices by at least one. 

Case  2 Suppose that  exactly one path endpoint, say s, is in the interior of 
rectangle r. Since t is exterior to r, starting at s the path must cross the rectangle 
boundary at least once. Let Pl be the last point (this may be t) where P intersects 
the boundary of rectangle r before reaching t. 

Suppose WLOG that  pl is on a vertical boundary line vl. If path endpoint s 
is on a horizontal segment hi, then no path from Pl to s is shorter than ply1 his. 
Replacing the subpath of P going from Pl to s with this subpath gives a new 
path that  is at least as good as P.  This new path reduces the size of the set of 
cross-through vertices S by at least one. 

Still supposing that the boundary line containing Pl is vertical line vl, now 
suppose that  path endpoint s is on a vertical segment v2. Since the path endpoint 
is on this segment, the algorithm we described treats this segment as if it were 
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a boundary segment; that is, all intersection vertices of segment v2 with other 
lines are contained in the constructed graph G ~. 

The intersection point v is at an intersection involving some horizontal line 
hi. There is no shorter path from Pl to v than plvlhl  v and no shorter path from 
v to s than vhlv2s. Replacing the subpaths ply and ~-~ in P with these new 
subpaths gives a path that is at least as good as P and does not cross through 
vertex v. Thus, the number of vertices in the set S of cross through vertices is 
decreased by at least one. 

Case 3 Both path endpoints are in rectangle r. Remembering that any segment 
holding an endpoint has all intersection points with other segments included in 
G', this case is easy and is omitted. 

All cases For any path in G, we use the above arguments to find, for any path 
that crosses through an interior to interior intersection vertex v, an equally good 
path that eliminates this cross-through vertex using a subpath contained entirely 
in G ~. We can do this iteratively on P, removing cross through vertices, until 
we have a path that is at least as good and does not cross through interior to 
interior vertices. This path can be represented in G', completing the proof. [] 

This gives us our main result: 

T h e o r e m 6 .  The algorithm described here computes a shortest path in an ar- 
rangement of horizontal and vertical segments in time O(nt"Slogn) and space 
O(nlD. 

6 Q u e r y  p o i n t s  

Suppose one has a shortest path problem as described above, but one only knows 
the location of one path endpoint in advance. We show here that it is possible 
to preprocess the arrangement in time O(n 15 log n) and space O(n 15) and then 
compute shortest paths for query points in time O(log n). 

The algorithm begins by constructing a graph as described above, where we 
have only one known path endpoint. It then computes the shortest paths from 
the known endpoint to all vertices in the graph using Dijkstra's single source 
shortest paths algorithm. 

To find the shortest path for a query point t, the algorithm must find vertices 
in the constructed graph that are close to the query point. In the worst case, the 
algorithm must check paths from 6 selected vertices in the graph. 

Suppose the query point is at the intersection of two segments. If the intersec- 
tion point is not the intersection of two interior segments, then the intersection 
point is a vertex of the constructed graph, and the already computed shortest 
path to the vertex is correct (as discussed below). If the intersection point is 
the intersection of two interior lines, then the algorithm finds the four vertices 
where these two interior lines intersect the boundary lines. It computes the path 
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length to t from each of these four points and chooses the best of these. This is 
a shortest path in the arrangement. 

Suppose the query point is on a single segment and so is not at an intersection. 
If this point is not in the interior of the grid boundary rectangle, one finds the 
two vertices that  are nearest to the point on the segment and chooses the best 
path from these vertices. 

The most complex case occurs when the point is interior to a boundary 
rectangle and not at an intersection. First one needs to look at the two vertices 
where the segment containing t intersects the boundary. Next, one needs to find 
two segments perpendicular to this segment that  are closest to t on each side of t .  
These two segments intersect the boundary at four points. This gives six vertices 
total. One finds the best paths from these six vertices to t (in O(1) time each) 
and chooses the best of these. This gives a shortest path in the arrangement. 

If t is located in the interior of the boundaries of a complete grid and s is also 
interior to this rectangle, then one treats it as a special case; one can compute 
the shortest path in O(1) time once one has found "close" segments. 

We must describe, then, how one quickly finds the "close" vertices described 
above. The algorithm builds a lookup table for vertical lines and lookup tables 
for each complete grid. 

For the set of vertical lines we have the following. We have an array of vertical 
lines sorted by x coordinate. For each vertical line, we store a (variable sized) 
array containing a list, sorted by y coordinate, of all complete grids that  intersect 
that  line (even though the segment, as opposed to the line, may not pass through 
a complete grid). Then, given the coordinates of the query point, we can find 
the vertical line (or nearest vertical line) in time O(log n) and find the complete 
grid on that  line in time O(logn). 

In a vertical strip there are v ~ vertical lines, and we define ni to be the 
number of complete grids in the strip. As stated previously, ~ i  ni _< 2n + x/-n. 
Then the space for this data structure is 

~"~i V ~ ~i 
= 

For each complete grid, we maintain two sorted arrays: one for horizontal 
boundaries and one for vertical boundaries. These each contain coordinates 
paired with pointers to vertices in the graph that  are located at that  x or y 
coordinate. Thus, once one finds the complete grid containing the query point, 
one can find the "closest" vertices--the ones needed by the computations de- 
scribed above--in O(log n) time. The number of pointers maintained is less than 
the number of vertices in the graph, so the space is O(nl'5). 

To see that  the computations described here actually find a shortest path, 
we need to prove the following. 

L e m m a  7. The shortest paths computed by Dijkstra's algorithm for all vertices 
in the constructed graph are shortest paths to these vertices in the arrangement. 
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This does require proof, since the previous proofs all assume that  t is known 
in advance, and the segments containing t are treated specially. The proof is 
easy and is omitted. 

T h e o r e m 8 .  There is a shortest path from s to t that passes through one of the 
(at most) 6 vertices described above. 

Proof  sketch. If t is not in the interior of the boundaries of a complete grid, 
then it is either at an intersection point, for which the shortest path has al- 
ready been computed, or it is between two vertices, and the shortest path passes 
through one of these vertices. 

Suppose that  t is in the interior of the region bounded by grid boundary 
segments. Assume also that  s is not in the interior. Then a shortest path from s 
to t must pass through the boundary. Let Pl be the first point where the path 
from s intersects the boundary. Then traveling from Pl to one of (whichever 
gives the best path) the six vertices described above (all on the boundary) and 
taking the obvious shortest path from that  vertex to t gives a path that  is as 
good as any other path traveling through Pl to t. 

If s is in the interior of the rectangle, one treats this as a special case and 
computes the shortest path in O(1) time once t has been located. [] 

7 Concluding remarks 

m 

Fig. 2. An example with 3 llne orientations where a shortest path (bold path in fig- 
ure) does not have an equally short path in the constructed graph of overlapping, 
different-orientation grids. 

It would be nice if the algorithm described here could be generalized to find 
shortest paths in an arrangement containing segments with O(1) different orien- 
tations. However, a direct extension of the methods here to more line orientations 
does not appear to work. 
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The most direct way to extend the ideas of this paper (to 3 orientations for 
example) is as follows. Choose one line orientation and choose partit ioning lines 
at V~  intervals. Find complete grids with respect to lines at a second orientation 
and build a graph from these. Then find complete grids with line segments of 
the third orientation and add these to the graph. 

One must decide for this approach whether interior segments of grids from 
one orientation should have vertices at intersections with interior segments from 
different orientation, overlapping grids. The answer has to be that  these intersec- 
tions are not added as vertices; otherwise, the graph will have too many vertices. 
But as shown in Figure 2, there exist shortest paths in the arrangement for which 
no equally short path can be found in a graph constructed this way. 

The factor O(n 1"5) in our results may be induced by the solution method 
rather than the problem. It is an open question whether one can find shortest 
paths in vertical and horizontal segments more quickly and in tess space. 
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