
All the solutions were made by the organisers of BOI’2001. 

 

Excursion 

Solution can be found in a separate .pdf file in Polish language only. 

 

 

Box of Mirrors 
 

The correct solution is a greedy algorithm, that tries to put mirrors in such way that 

every light beam goes as much as possible upwards. We will successively track beams 

lighted into gaps with numbers 1,2,… n+m. 

 

Let us consider the following algorithm: 

 

1. Let x,y be the current column and row of the tracked beam. Let x',y' be the column 

and row of the gap through which the beam should leave. 

2. If x=x' and y=y' then stop. 

3. If beam goes vertically go to point 5.   

4. If there is a mirror above the current position and x  x' or y = y' go one cell to the 

right: x := x+1. 

Otherwise, place mirror in the cell x,y and go one cell up: y:= y -1 . 

Go to point 2.  

 

5. If there is a mirror in the current cell, go right: x:=x+1.  

Otherwise go up: y:=y-1. Go to point 2.   

 

To prove the correctness of this algorithm, we will consider the only bad situation:  

 

 
 

The beam should leave with the gap above, but on the way there is a mirror B. This 

situation can not occur because there is no light reflected by the upper side of a mirror 

A. And in our algorithm the mirror is placed only when the beam is reflected.  

 

 

Tests. 

Tests are random, with different sizes and different number of mirrors. 

 

 



Postman  
 

Remarks: 

 

– in graph presented in tasks always have Euler cycle (all vertex degrees are even), 

– Euler cycle satisfy all conditions given in task,  

– the total profit does not depend on chosen Euler cycle,  

 

profit w i k i w i k i w i i
i

n

i

n

i

n

i

n

i

n

     
    

    ( ( ) ( )) ( ) ( ) ( )
1 1 1 1 1

 

 

– tour which visits all edges, and some of them more then once, is  always worse then 

Euler cycle (because postman pays 1 euro for each road).  

– so the optimal solution simply ignore all w(i) values, and  returns Euler cycle 

(randomly choosen).  

 

Prog/poschk.pas 

 

Because for some tests there is more then one correct answer, external checker is 

needed. The checked depends on input and output file in current directory.  

 

Tests 

 

test 0 – example test 

test 1 – simple test (manualy choosen), n=7 

test 2 – random test (type1), n=10 

test 3 – ladder + extra edges, n=20 

test 4 – random test (type2), n=40 

test 5 – loop (two side), n=100 

test 6 – random test (type1), n=100 

test 7 – flower (four connected loops), n=120 

test 8 – random test (type2), n=150 

test 9 – ladder, n=200 

test 10 – random test (type2), n=200 

 

 

Crack the Code 
 

1. Problem Analysis 

1.1. Coding program (crack.pas) 

The crack.pas program codes (one by one) the successive characters form the input 

file. Characters that are not letters (of the English alphabet) are left unaltered. The key 

given by the user specifies the way characters are coded. Namely, the i-th character 

from the input file (counting from 1) is “rotated” in a “cyclic” English alphabet 

(consisting of capital letters only) by the value of the [(i-1)mod 10+1]-th element of 

the key. (Elements of the key are also numbered from 1).  

 

1.2 Reverse engineering the coding algorithm 



It can be easily seen, that knowing the key we can decode the message in a similar 

way it was coded–we can apply the coding algorithm given above for a key consisting 

of negated elements of the coding key. Hence, the problem reduces to finding the 

coding key. In case of texts written in the natural language, the relative frequencies of 

particular letters are different. So, we can use some statistical methods to determine 

the key. Basing on the uncoded piece of text we can calculate the probability with 

which particular letters appear in the text. We will denote by p_i the probability that 

(the next) character in the text is i , and by P the probability distribution itself. To find 

the i-th element of the key, we calculate the probability distribution for letters 

appearing in the coded text on positions i, (i+10), (i+20), ... . We will denote by qi the 

probability of appearance of letter i , and by Q the the probability distribution itself. 

Now, it is enough to find such a cyclic rotation of sequence (qA, qB, ..., qZ) that is 

closest to the distribution P .  

 

2. Exemplar Solution 

prog/cra.pas. 

Our solution is based on the method described above. We also need a measure of how 

“close” the distribution P is to R = (rA, rB, ..., rZ) = (..., qZ, qA, qB, ...) (some cyclic 

rotation of the sequence (qA, qB, ..., qZ) ). We will use here statistical test 
2

 , which 

can be expressed as:  

 

n
p r

p

i i

ii A

Z ( )
;






2

 

where n is the number of letters in the sample on which Q is based.  

 

Remark. The test 
2

  should be used only in the cases when for each i the value npi is 

not too small (let's say, not less than 0.1 ). Therefore, sometimes it maybe necessary to 

group a few events in the distribution P , so that their total probability is big enough, 

relatively to n .  

 

3. Other Solutions 

prog/cra1.pas 

This solution differs from the one above only in the measure used to compare 

probability distributions. We can view the distributions P and R as vectors in a 26-

dimensional space (26 is the number of letters in the alphabet). We can calculate their 

dot product and normalise it, dividing it by the square root of the product of lengths of 

the two vectors. The closer the result is to 1, the closer are the two distributions to 

each other.  

 

4. Tests 

There are 5 test cases. Each of them consists of two files:  

–in/cran.in – coded message, 

–in/cran.txt – text sample of the same origin as the coded message. 

 

All the messages are in English. Texts differ in the difficulty level – the longer the text 

sample and coded message, the more reliable are the results of the statistical analysis. 

In case of test no 5, program cra1.pas fails to decode correctly all of the characters, 



however most of them is decoded correctly and the resulting file can be corrected 

manually. Program cra.pas, however, solves this problem correctly.  

 

Files out/cran.out contain decoded messages form files in/cran.in. The testing software 

should compare the output files delivered by contestants with the files in the /out 

directory.  

 

 

Knights 
 

1. Introduction 

} The task is a hard one. Solution is based on the “Hungarian theorem”. Basing on the 

theorem, the problem can be reduced to finding a maximal matching in a bipartite 

graph. Maximum data size (40000 fields, i.e. 40000 vertices) requires best of known 

algorithms, e.g. Hopcroft-Karp's algorithm.  

 

2. Problem analysis. 

We will build a graph, whose vertices are the fields on the chess-board, and edges 

represent single moves of the knight. In a single move knight is always jumping from 

a white field onto a black one, or vice versa, hence the graph is a bipartite one. The 

maximal independent set of vertices is what we are looking for.  

 

The completion of the independent set of vertices form a vertex-covering of the graph. 

One of the formulations of the Hungarian theorem say, that in any bipartite graph the 

size of the smallest vertex-covering is equal to the size of the maximal matching. 

Hence, if M is a maximal matching in the graph, then the result is equal |V|-|M|=n
2
-m-

|M| . So, the algorithmic part of the solution reduces to finding the maximal matching.  

 

Note, that the maximal degree of each vertex is 8. Therefore, |E| 8|B|, 8|W| , where W 

is the set of white fields, and B is the set of black fields, and hence |E|4|V|=O(|V|)  

 

3. Exemplary solution. 

The solution uses the Hopcroft-Karp's algorithm. It is written in the file kni.pas.  

 

Considering the big size of the graph, neither it nor the acyclic graph of extending 

paths can be represented in a straightforward way (at least not in DOS). However, we 

do not need to remember the set of edges E , since all the moves are allowed. It is 

enough to remember which fields have been removed and which are present.  

 

The implementation of the auxiliary acyclic graph is more complicated. It can be seen, 

that we do not need to represent the set of its vertices explicitly. The starting vertices 

are unmatched white fields of the board, and the rest of them can be accessed through 

the edges. The lists of incident vertices are represented in a compressed way% –one 

bit per edge and one byte per vertex.  

Since |E|=O(|V|) , complexity of this algorithm is O E V V O V((| | | |) | |) (| | ).  2 3  

 

4. Other solutions. 



We can find the maximal matching using the Edmonds-Karp's algorithm ([CLR], 

section 27.3) finding the maximal flow. In our case, this algorithm runs in O(|V|^2) 

time. Its simpler than the exemplary one, however it is significantly slower. Its written 

in kni1.pas file.  

 

We can improve this algorithm. Instead of searching each time for the shortest 

extending path, we store the list of unmatched white fields and search for extending 

paths starting from each of these fields. There is no guarantee that we find the shortest 

path, but if we find a patch quick enough, and it is short, then we can extend the 

match doing only a few steps instead of (|V|) . This solution is written in the file 

kni2.pas.  

 

We can improve this algorithm even further, starting the next search from the field 

next to the one where the previous extending path started. Proceeding in such a way, if 

there were no extending paths starting from fields A1, A3, A5, A7, A9 and there was 

such a path starting from A11, then fields A1, A3, A5, A7 and A9 will be considered 

last. Such an improvement gives practically very good algorithm, that sometimes 

behaves better than the exemplary one. Moreover, such a solution can be devised even 

without the knowledge of Hopcroft-Karp's algorithm. This solution is in the file 

kni3.pas.  

 

5. Wrong solutions. 

One can approximate the solution as maximum of numbers of white and black fields. 

Such a solution is correct, for example, for chess-boards of size not grater than 3. 

Such a solution would score 0 points.  

 

6. Tests. 

Since the task is a hard one, and correct but slow solutions should score a significant 

amount of points, all the tests should be worth 10 points.  

No n m |V| description 

1 2 0 4 full board 22 

2 2 1 3 22 board with one field missing 

3 10 67 33 1010 board, random fields missing 

4 20 200 200 2020 board, with regular cuts along two edges and 

some random fields missing, 

5 28 276 508 as the previous one, 2828 

6 40 913 687 as the previous one, 4040 

7 80 4233 2167 as the previous one, 8080 

8 180 14632 17768 as the previous one, 180180 

9 200 4 39996 200200 with four fields near the corner missing 

(in the shape of letter L) 

10 200 10100 29900 200200 random fields missing 

 

7. Timeouts 

Below are given execution times (for Pentium 166) and proposed timeouts. All the 

times are given in 1/100 s.  

 
No 1 2 3 4 5 6 7 8 9 10 



n 2 2 10 20 28 40 80 180 200 200 

m 0 1 67 200 276 913 4233 14632 4 10100 

|V|n
2
–m 4 3 33 200 508 687 2167 17768 39996 29900 

KNI.PAS      11 33 868 143 2225 

KNI1.PAS     17 28 308 18405 66131 44105 

KNI2.PAS      11 110 13286 2109 18032 

KNI3.PAS        214 2098 1044 

timeout 100 100 100 100 100 100 200 3500 8900 8900 

points 10 10 10 10 10 10 10 10 10 10 

 

 

8. Bibliography 

[CLR] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest “Introduction to 

Algorithms”. 

 

 

Mars Map 
mar.pas  O(n\log c) ) – Scan-line solution.  

n – no. of rectangles c – maximum y-coordinate.  

 

It passes all vertical lines in increasing order of their x -values and keeps a list of 

active y -intervals. At each “stop”, i.e. for every vertical line, it does the following: 

 

– multiply the x -distance to the previous stop with the size of the interval that is the 

union of all active y -intervals, 

– add the result of this multiplication to the total result,  

– update the set of active y -intervals.  

 

The scan line is implemented as a full binary tree over range 0... 30000 (whole 

structure is hidden in array, like in standard heap implementation). Every node of the 

tree consists:  

– number of edges which cover whole interval  

– summary length of covered space in the interval defined by subtree of vertex  

 

2. Other solutions 

mar1.pas  ( O(nc) ) – Scan-line solution with lazy implementation. The scan line is 

array over range 0... 30000 .  

 

mar2.pas ( O(n
2
) ) – Scan-line solution, (modification of previous solution with added 

y-axis compression).  

 

mar3.pas ( O(n
3
) ) – This solution first “compress” x and y-axis to used co-ordinates. 

Then we can think about plane as a bitmap and paint rectangles. This solution may not 

pass all test cases.  

 

3. Tests 

 

test0 – example from task description; 

test1 – simple test, n=4; 



test2 – simple test, n=7; 

test3 – image with text: “BOI”; 

test4 – random rectangles, n=100; 

test5 – snail shape, made from rectangles, n=200; 

test6 – random rectangles, n=1000; 

test7 – large rectangles placed in X shape, n=2000; 

test8 – many vertical and horizontal bars, n=5000; 

test9 – two groups of squares, n=10000; 

test10 – rhomb shape, n=10000; 

 

Execution times (in seconds):  

 
 mar.pas mar1.pas mar2.pas mar3.pas 

mar0.in 0.00 0.00 0.00 0.00 

mar1.in 0.00 0.00 0.00 0.01 

mar2.in 0.00 0.00 0.00 0.00 

mar3.in 0.00 0.01 0.00 0.00 

mar4.in 0.00 0.24 0.01 0.03 

mar5.in 0.01 0.48 0.01 0.01 

mar6.in 0.05 2.00 0.16 – 

mar7.in 0.08 6.32 0.46 – 

mar8.in 0.18 23.06 4.43 – 

mar9.in 0.36 13.10 13.50 – 

mar10.in 0.42 26.19 27.03 – 

The images of tests can be found in a separate .pdf file. 

In fact some of tests are much bigger, and images present scaled down tests. 

 

 

6. Teleports,  
 

1. Sample solution 

tel.cpp 

 

We will call Bornholm and Gotland A and B respectively. The first step of our 

algorithm is setting all the teleports on A in receiving mode, and all teleports on B in 

sending mode.  

 

Why is this solution not good? The only thing that is wrong is that some receiving 

teleports on A are useless - there are no teleports sending to them. We will maintain 

this invariant - after each step the solution will be OK except that some receiving 

teleports on A will be useless.  

 

In each step we choose a receiving teleport on A with no teleports sending to it. If 

there are no such teleports, we are finished. Let's call the teleport we have chosen x . 

We switch the teleport x to sending mode. Let y be the destination of x – y is a 

teleport on B . If y is in receiving mode, all is fine – the invariant is true. Otherwise 

we just switch y to receiving mode. We can make another receiving teleport on A 

useless this way, but the invariant is still true.  

 

At the end there are no useless teleports left, so we have a correct solution.  



 

At each step the number of receiving teleports on A decreases by 1 , so we will make 

at most m steps.  

 

To be able to make each step in O(1) time, we introduce an array inDegree, in which 

we store for each teleport on A the number of teleports sending to it. We also keep 

track of all useless receiving teleports on A – in the sample solution they are kept on a 

stack. In each step we just take a teleport from the stack, switch it to sending mode, 

possibly change the mode of its destination teleport and update one entry in the array 

inDegree.  

 

Reading the input and the initial step take O(m+n) time, therefore time complexity of 

the whole algorithm is O(m+n) . We also need O(m+n) space.  

 

 

2. Other solutions. 

 

One could just look for a useless teleport in a straightforward way: without the 

inDegree array, O(m+n) time for each step. This way we get an O(m(m+n)) solution – 

this solution is implemented in tel2.cpp. 

 

3. Other files 

telinv.cpp – input file format verifier; 

telchk.cpp – solution checker ; 

telgen.cpp – tests generator; 

 

4. Tests 

 

All tests were generated automatically. Most are random. Some are two lists, which 

can be one of the worst cases for some quadratic algorithms and for heuristics, 

because there is a unique answer and the whole list has to followed to determine the 

answer for a teleport.  

 

test1 ( sec.) m=n=10; 

test2 ( sec.) m=100 , n=107; 

test3 ( sec.) m=1000 , n=1005; 

test4 ( sec.) m=n=1000 , two lists  

test5 ( sec.) m=10006 , n=10000  

test6 (0.1 sec.) m=n=10000 , two lists 

test7 (0.2  sec.) m=50000 , n=1000  

test8 (0.2  sec.) m=1000 , n=50000  

test9 (0.4  sec.) m=50000 , n=49987  

test10 (0.4  sec.) m=n=50000 , two lists tests  

 

There can be more than one possible output, therefore a solution checker telchk.cpp is 

included.  

 


