Analysis: GAT

Gates
HISTORY:

dokument systemu SINOL 1.7.2

1 Problem analysis

In task "Gates” our goal is to find such a configuration of stétg that closes all channels. If such a config-
uration exists we have to find a state of every switch in suéil eanfiguration.

Let us denote by the sentence "Switch numbgfs on.”. We can think abowt; as a logical variable
(whether the sentence is true or false). Using this appradicive have to do in this task is to find valuation
of these variables fulfilling task conditions. Moreover vam@asily transform the input file to the language
of logic. | will show it using the example from the task:

32

1021

1020

1121

In this example we have two switches. As a result, we will hiswe variablesa; anda, respectively. If
we look at the channel number one we will see that: switch rermobe has to be closed or switch number 2
has to be opened. Similarly we can transform next two chanié obtain logical formulas:

e Channel 1—-a; Vvay

e Channel 2:-a; V —ay

e Channel 3a; vay
Since we are looking for a configuration that closes all cletswe have to make a conjunction of men-
tioned logical formulas:
(magVap) A (—agV-ag) A(agVay)

Our task is to find a valuation of variablag anda; that satisfies formula above. In general we have to
find a valuation of variables ,ay,. . . am satisfying a certain logical formula. In general problensatisfying
a given logical formula is well known to be NP-complete. kogtely, the formula obtained in this task is of
a very special form:
(AVXEYA (GG A A XV XE)

wherex! andx? are literals and each of them stands for some variapte negated variablea;. The literals
xt andx? correspond to the conditions of- th channel. The formula is a conjunction of alternatives of
exactly two literals. Therefore is said to be in #seond conjunctive normal form (2-CNF). We shall show
that this problem can be solved in a polynomial (even lingarg.
For the rest of this problem discussion | will assume thatgma it to find correct valuation of variables
a1,a2,. .. @min formula:
OAVXE)A GV A ... A GV)

2 2-CNF formulasand graphs
Let us consider an undirected gra@h= (V, E) with vertices corresponding to all possible literals:
V ={ay,-a1,a2,7ay,...,am, "am}
and edges connecting pairs of literals which appear inrateres of the formula
E={(051»:i=12,...,n

GraphG from our example is shown on the following picture.

Our goal is to select a subsat C V containing vertices corresponding to these literals wigichtrue
when the formula is satisfied. For that the following corafis have to be satisfied:

1. eithera; € W or —g; € W (exclusively), fori =1,2,....m

2. forany edgéu,v) c E,ue WvveW

To do that let us construct directed graph= (V, E1) using definition of graplks:
Ei={(-u,v):(uv)eEV(yu) cE}

We will call it the inference graph, because it can be used to find which vertices one has to chodke
setW, provided that some given vertex has already been choseninfdrence graph hasrvertices and at
most 2 edges. The inference graph®fis shown below.

()= (=)
>
@@

Looking at this graph it is easy to notice that eveyC V which is a correct solution of our problem
must satisfy the condition:
(WeWAWV) eE)=veW

This logical formula is equivalent to the previous condititumber 2. As a result we can search\iC V
using inference graph and not contradicting the exclusivelition number 1.

Let us denote
Induced(u) = {v:ur v}

whereu — v means that there exists a path from vertex u to vertex v intg@p Using this definition we
can easily rewrite previous condition as:

w e W = Induced(w) CW

If a setlnduced(v) contains two opposite verticé® € | nduced(v) A —w € Induced(v)) we will call vertexv
problematic.

Let us introduce another kind of undirected graph - conflietpfp. Using the second condition we can
say that for every edge, v) € E of graph G it is not possible teu and—v both be in setV. We can say that
these vertices are in conflict. Therefore, we can build a mgftaphG; = (V, Ez) where:

Ex = {(-u,~v): ((u,v) €E)V((v,u) € E)}

Conflict graph for our example is shown below.

Using these definitions and facts we can show a solution toptbblem.

3 Solution

3.1 Naivesolution

The first naive solution is to solve this problem using baatking. In the algorithm for each vertex which is
yet neither accepted nor rejected we try to decide if it isspae to find a solution with this vertex accepted
and if it is not if it is possible to reject this vertex. Unfortately the time complexity of this algorithm is
exponential, so it is not an efficient solution.

3.2 Polynomial solution

We will try to show better algorithm. Using previously inthaced definitions we can solve this problem using
the following algorithm:

1L.W=0
2. while|W| < mrepeat

e letx be the vertex that ¢ W and—x ¢ W
¢ if both x and—x are problematic then "SOLUTION DOES NOT EXIST" (stop theaalthm)

e letv be a non-problematic vertexor —x
o W :=WUInduced(v)

3. W is correct solution for our problem

It is not obvious that this algorithm really returns a cott@eswer. To see that let us show the lemma.

Lemma

Let A be a set of vertices that neither they nor the vertices opptisthem are in thenduced(v). If the
vertexv is non-problematic then there is no edge in the conflict gtsgdtveen A andinduced(v).

Proof

Let a be the vertex fronA (a € A) andu be the vertex froninduced(v) (u € Induced(v)). If there were
a conflict betweerm andu there would have to be an ed@g —a) in inference grapl@,. As a result there
would have to be:a € Induced(u) C Induced(v). But—a ¢ Induced(v) by the definition ofA. &

This Lemma shows the correctness of presented algorithmttirgéhe value of a certain variable to in
a way not leading to a contradiction does not affect the eestnot inlnduced(v) and thus leads to a proper
solution, if one exists. This solution has the overall tinenplexityO(msx (n+m)) as checking if a vertex is
problematic may take time proportional to the size of thepbra

3.3 Mode solution

Let us think about strongly connected components in ourémiee graph. (Two verticasandv belong to
the same strongly connected component if and only if theeepath fromu to v as well as fronmv to u).
Strongly connected components of an inference graph hageyaugeful property for us: for any component
C CV, eitherC CW, orCNW = 0. As a result, we can consider the graph of componéats: (V, Ec),
whose vertices are strongly connected components of thih@aand edges are inherited from that graph
in a natural way. There is a simple algorithm calculatingrstily connected components in a graph in time
Oo(n+m).

Obviously the graph of components is a directed acycliclyrélige shall sort it topologically and consider
its vertices in not-ascending order, according to the gafptomponents. This can also be done in a linear
time.

We say that we accept a component when that component isrcloskeincluded to the s&V while
performing the algorithm. Similarly, we say that we rejeat@mponent if we decide not to choose the
component anyway. Itis easy conclusion that if we rejectrammnent we have to reject all its "predecessors”
and if we accept a component we have to accept all comporeitare induced by our component.

Still thinking about the previous algorithm it leads to amet more efficient solution of the problem:

1. read the input file and generate the inference gph

2. find strongly connected components@&fand build a graph of componerg

3. if there are two opposite vertices in a component rejéstabmponent (and all its "predecessors”)
4. sort topologically the components, and process themsoeateling order:

e if current component has not been rejected so far, accept it
o for each vertex in the accepted component reject the conmpa@oataining the opposite vertex
(and consequently all its "predecessors”)

5. if exactlymvertices have been accepted, then they form a correct@ojiherwise solution does not
exist.

Note that because of topological order of components eahie accept a componédhitall components
induced byC have already been accepted. Indeed, if one had been refesfme, therC would also have
been rejected as a "predecessor” of it. It is also clear #tdWsdoes not contain any conflicts. As a result, if
it returns an answer it will be correct. All we have to do is how that if solution exists, this algorithm will
find it. But it is a consequence of previous algorithm and Lenfrom section "Polynomial solution”, as we
reject all problematic vertices in step 3 of our algorithm.

4 Tests

| have prepared 4 "ocen” tests for competitors and 17 grodipests designed for checking contestants
solutions.

Exact description of tests is shown below. Each test is destby values ofi andm and the number
of switches which are really used. Moreover in the first twadbets there is running time of both model
solutions. Explanations of used signatures are shown below

e gat 0.1 N (0.03 sek.) (0.00 sec.) first example from the task description

e gat 0a. I N(0.03 sek.) (0.00 sec.) second example from the task desariptio

e gatla.IN(0.03 sek.) (0.00 sec.) n=10, m=10, used=10, test P, 3 chains

e gat1b. IN(0.02 sek.) (0.00 sec.) n=2, m=2, used=1, test |

e gat2a. I N(0.03 sek.) (0.00 sec.) n=20, m=20, used=20, test P, 1 chain

e gat 2b. IN(0.03 sek.) (0.00 sec.) n=2, m=20, used=1, test |

e gat 3.1 N(0.03 sek.) (0.00 sec.) n=20, m=7, used=7, test R

e gat4.1N(0.04 sek.) (0.00 sec.) n=100, m=115, used=100, test P, 30chain

e gat5.1N(0.04 sek.) (0.00 sec.) n=200, m=100, used=100, test R

e gat6.1N(0.04 sek.) (0.00 sec.) n=500, m=500, used=500, test P, 72<hain

e gat 7.1 N(0.05 sek.) (0.00 sec.) n=700, m=1243, used=940, test R

e gat8.1N(0.05sek.) (0.00 sec.) n=900, m=354, used=354, test R

e gat9a. I N(0.05 sek.) (0.00 sec.) n=1000, m=1500, used=1000, test P,Bscha
e gat9b. I N(0.05 sek.) (0.00 sec.) n=1000, m=2000, used=1239, test |

e gat 10. I N(0.08 sek.) (0.03 sec.) n=10000, m=37651, used=10000, testiRias
e gatlla.1N(0.32sek.) (0.24 sec.) n=90000, m=40000, used=40000, test R

e gat11b. 1 N(0.55 sek.) (0.37 sec.) n=100000, m=100000, used=86402, test |
e gat12. IN(0.58 sek.) (0.44 sec.) n=140000, m=60000, used=60000, test R
e gat 13. IN(0.52 sek.) (0.44 sec.) n=150000, m=160000, used=15000®, t6ésthains
e gat 14. IN(0.74 sek.) (0.56 sec.) n=200000, m=70000, used=7000, test R

gat 15a. I N (1.05 sek.) (0.72 sec.) n=250000, m=250000, used=25000@, t&Stchains

gat 15b. I N (1.44 sek.) (0.94 sec.) n=200000, m=400000, used=25299®R test

gat 16. I N (1.12 sek.) (0.87 sec.) n=250000, m=500000, used=25000, &6t

gat 17a. I N(1.00 sek.) (0.92 sec.) n=250000, m=500000, used=25000@ teatthains

gat 17b. I N(1.05 sek.) (0.73 sec.) n=250000, m=500000, used=500000 test

Explanations:

e P -inference graph consisting of few chains ending with [Ewiatic vertices
e R -random test with existing solution

¢ | - test checking correctness of solutions - answer IMPOSEIB

e H - maximal test

5 Limits

| suggest to set about Aunning time of the slowest model solutiopr og/ gat 1. cpp as a time limit for this
task. Using this selection, statistics turn out to be as ineat! below:

e Model solutions prog/ gat.cpp, prog/gatl.cpp, prog/gat2. pas get100 points.
e Slower solutions prog/ gatsl.cpp, prog/gats2.pas getabout55 points.
e The slowest solutionpr og/ gat s0. cpp gets about 16 points.

e The incorrect solutionpr og/ gat b1. cpp gets about 6 points.

As a memory limit | suggest 96 MB.

