
Analysis: GAT
Gates
HISTORY:

dokument systemu SINOL 1.7.2

1 Problem analysis

In task ”Gates” our goal is to find such a configuration of switches that closes all channels. If such a config-
uration exists we have to find a state of every switch in such valid configuration.

Let us denote byai the sentence ”Switch numberi is on.”. We can think aboutai as a logical variable
(whether the sentence is true or false). Using this approach, all we have to do in this task is to find valuation
of these variables fulfilling task conditions. Moreover we can easily transform the input file to the language
of logic. I will show it using the example from the task:

3 2
1 0 2 1
1 0 2 0
1 1 2 1
In this example we have two switches. As a result, we will havetwo variablesa1 anda2 respectively. If

we look at the channel number one we will see that: switch number one has to be closed or switch number 2
has to be opened. Similarly we can transform next two channels. We obtain logical formulas:

• Channel 1:¬a1∨a2

• Channel 2:¬a1∨¬a2

• Channel 3:a1∨a2

Since we are looking for a configuration that closes all channels we have to make a conjunction of men-
tioned logical formulas:

(¬a1∨a2)∧ (¬a1∨¬a2)∧ (a1∨a2)

Our task is to find a valuation of variablesa1 anda2 that satisfies formula above. In general we have to
find a valuation of variablesa1,a2,. . . ,am satisfying a certain logical formula. In general problem ofsatisfying
a given logical formula is well known to be NP-complete. Fortunately, the formula obtained in this task is of
a very special form:

(x1
1∨ x2

1)∧ (x1
2∨ x2

2)∧ . . .∧ (x1
n ∨ x2

n)

wherex1
i andx2

i are literals and each of them stands for some variablea j or negated variable¬a j. The literals
x1

i andx2
i correspond to the conditions ofi− th channel. The formula is a conjunction of alternatives of

exactly two literals. Therefore is said to be in thesecond con junctive normal f orm (2-CNF). We shall show
that this problem can be solved in a polynomial (even linear)time.

For the rest of this problem discussion I will assume that ourgoal it to find correct valuation of variables
a1,a2,. . . ,am in formula:

(x1
1∨ x2

1)∧ (x1
2∨ x2

2)∧ . . .∧ (x1
n ∨ x2

n)

1

2 2-CNF formulas and graphs

Let us consider an undirected graphG = (V,E) with vertices corresponding to all possible literals:

V = {a1,¬a1,a2,¬a2, . . . ,am,¬am}

and edges connecting pairs of literals which appear in alternatives of the formula

E = {(l1
i , l2

i) : i = 1,2, . . . ,n}

GraphG from our example is shown on the following picture.

!a2

a1 a2

!a1

Our goal is to select a subsetW ⊂ V containing vertices corresponding to these literals whichare true
when the formula is satisfied. For that the following conditions have to be satisfied:

1. eitherai ∈W or¬ai ∈W (exclusively), fori = 1,2, . . . ,m

2. for any edge(u,v) ∈ E, u ∈W ∨ v ∈W

To do that let us construct directed graphG1 = (V,E1) using definition of graphG:

E1 = {(¬u,v) : (u,v) ∈ E ∨ (v,u) ∈ E}

We will call it the inference graph, because it can be used to find which vertices one has to chooseto the
setW , provided that some given vertex has already been chosen. The inference graph has 2m vertices and at
most 2n edges. The inference graph ofG is shown below.

!a2

a1 a2

!a1

Looking at this graph it is easy to notice that everyW ⊂ V which is a correct solution of our problem
must satisfy the condition:

(w ∈W ∧ (w,v) ∈ E1) ⇒ v ∈W

This logical formula is equivalent to the previous condition number 2. As a result we can search forW ⊂ V
using inference graph and not contradicting the exclusive condition number 1.

2

Let us denote
Induced(u) = {v : u 7→ v}

whereu 7→ v means that there exists a path from vertex u to vertex v in graph G1. Using this definition we
can easily rewrite previous condition as:

w ∈W ⇒ Induced(w) ⊆W

If a setInduced(v) contains two opposite vertices(w ∈ Induced(v)∧¬w ∈ Induced(v)) we will call vertexv
problematic.

Let us introduce another kind of undirected graph - conflict graph. Using the second condition we can
say that for every edge(u,v) ∈ E of graph G it is not possible to¬u and¬v both be in setW . We can say that
these vertices are in conflict. Therefore, we can build a conflict graphG2 = (V,E2) where:

E2 = {(¬u,¬v) : ((u,v) ∈ E)∨ ((v,u) ∈ E)}

Conflict graph for our example is shown below.

!a2

a1 a2

!a1

Using these definitions and facts we can show a solution for the problem.

3 Solution

3.1 Naive solution

The first naive solution is to solve this problem using backtracking. In the algorithm for each vertex which is
yet neither accepted nor rejected we try to decide if it is possible to find a solution with this vertex accepted
and if it is not if it is possible to reject this vertex. Unfortunately the time complexity of this algorithm is
exponential, so it is not an efficient solution.

3.2 Polynomial solution

We will try to show better algorithm. Using previously introduced definitions we can solve this problem using
the following algorithm:

1. W = /0

2. while |W | < m repeat

• let x be the vertex thatx /∈W and¬x /∈W

• if both x and¬x are problematic then "SOLUTION DOES NOT EXIST" (stop the algorithm)

3

• let v be a non-problematic vertexx or¬x

• W := W ∪ Induced(v)

3. W is correct solution for our problem

It is not obvious that this algorithm really returns a correct answer. To see that let us show the lemma.

Lemma
Let A be a set of vertices that neither they nor the vertices opposite to them are in theInduced(v). If the

vertexv is non-problematic then there is no edge in the conflict graphbetween A andInduced(v).
Proof
Let a be the vertex fromA (a ∈ A) andu be the vertex fromInduced(v) (u ∈ Induced(v)). If there were

a conflict betweena andu there would have to be an edge(u,¬a) in inference graphG2. As a result there
would have to be:¬a ∈ Induced(u)⊆ Induced(v). But¬a /∈ Induced(v) by the definition ofA. ♠

This Lemma shows the correctness of presented algorithm — setting the value of a certain variable to in
a way not leading to a contradiction does not affect the vertices not inInduced(v) and thus leads to a proper
solution, if one exists. This solution has the overall time complexityO(m∗ (n+m)) as checking if a vertex is
problematic may take time proportional to the size of the graph.

3.3 Model solution

Let us think about strongly connected components in our inference graph. (Two verticesu andv belong to
the same strongly connected component if and only if there isa path fromu to v as well as fromv to u).
Strongly connected components of an inference graph have a very useful property for us: for any component
C ⊆ V , eitherC ⊆ W , or C

T

W = /0. As a result, we can consider the graph of componentsGc = (Vc,Ec),
whose vertices are strongly connected components of the graph G1 and edges are inherited from that graph
in a natural way. There is a simple algorithm calculating strongly connected components in a graph in time
O(n + m).

Obviously the graph of components is a directed acyclic graph. We shall sort it topologically and consider
its vertices in not-ascending order, according to the graphof components. This can also be done in a linear
time.

We say that we accept a component when that component is chosen and included to the setW while
performing the algorithm. Similarly, we say that we reject acomponent if we decide not to choose the
component anyway. It is easy conclusion that if we reject a component we have to reject all its ”predecessors”
and if we accept a component we have to accept all components that are induced by our component.

Still thinking about the previous algorithm it leads to another, more efficient solution of the problem:

1. read the input file and generate the inference graphG1

2. find strongly connected components ofG1 and build a graph of componentsGc

3. if there are two opposite vertices in a component reject this component (and all its ”predecessors”)

4. sort topologically the components, and process them in descending order:

• if current component has not been rejected so far, accept it

• for each vertex in the accepted component reject the component containing the opposite vertex
(and consequently all its ”predecessors”)

5. if exactlym vertices have been accepted, then they form a correct solution, otherwise solution does not
exist.

4

Note that because of topological order of components each time we accept a componentC, all components
induced byC have already been accepted. Indeed, if one had been rejectedbefore, thenC would also have
been rejected as a ”predecessor” of it. It is also clear that setW does not contain any conflicts. As a result, if
it returns an answer it will be correct. All we have to do is to show that if solution exists, this algorithm will
find it. But it is a consequence of previous algorithm and Lemma from section ”Polynomial solution”, as we
reject all problematic vertices in step 3 of our algorithm.

4 Tests

I have prepared 4 ”ocen” tests for competitors and 17 groups of tests designed for checking contestants
solutions.

Exact description of tests is shown below. Each test is described by values ofn andm and the number
of switches which are really used. Moreover in the first two brackets there is running time of both model
solutions. Explanations of used signatures are shown below.

• gat0.IN (0.03 sek.) (0.00 sec.) first example from the task description

• gat0a.IN (0.03 sek.) (0.00 sec.) second example from the task description

• gat1a.IN (0.03 sek.) (0.00 sec.) n=10, m=10, used=10, test P, 3 chains

• gat1b.IN (0.02 sek.) (0.00 sec.) n=2, m=2, used=1, test I

• gat2a.IN (0.03 sek.) (0.00 sec.) n=20, m=20, used=20, test P, 1 chain

• gat2b.IN (0.03 sek.) (0.00 sec.) n=2, m=20, used=1, test I

• gat3.IN (0.03 sek.) (0.00 sec.) n=20, m=7, used=7, test R

• gat4.IN (0.04 sek.) (0.00 sec.) n=100, m=115, used=100, test P, 30 chains

• gat5.IN (0.04 sek.) (0.00 sec.) n=200, m=100, used=100, test R

• gat6.IN (0.04 sek.) (0.00 sec.) n=500, m=500, used=500, test P, 72 chains

• gat7.IN (0.05 sek.) (0.00 sec.) n=700, m=1243, used=940, test R

• gat8.IN (0.05 sek.) (0.00 sec.) n=900, m=354, used=354, test R

• gat9a.IN (0.05 sek.) (0.00 sec.) n=1000, m=1500, used=1000, test P, 3 chains

• gat9b.IN (0.05 sek.) (0.00 sec.) n=1000, m=2000, used=1239, test I

• gat10.IN (0.08 sek.) (0.03 sec.) n=10000, m=37651, used=10000, test P, 2chains

• gat11a.IN (0.32 sek.) (0.24 sec.) n=90000, m=40000, used=40000, test R

• gat11b.IN (0.55 sek.) (0.37 sec.) n=100000, m=100000, used=86402, test I

• gat12.IN (0.58 sek.) (0.44 sec.) n=140000, m=60000, used=60000, test R

• gat13.IN (0.52 sek.) (0.44 sec.) n=150000, m=160000, used=150000, testP, 6 chains

• gat14.IN (0.74 sek.) (0.56 sec.) n=200000, m=70000, used=7000, test R

5

• gat15a.IN (1.05 sek.) (0.72 sec.) n=250000, m=250000, used=250000, testP, 15 chains

• gat15b.IN (1.44 sek.) (0.94 sec.) n=200000, m=400000, used=252990, testR

• gat16.IN (1.12 sek.) (0.87 sec.) n=250000, m=500000, used=250000, testP, 10

• gat17a.IN (1.00 sek.) (0.92 sec.) n=250000, m=500000, used=250000, testP , 2 chains

• gat17b.IN (1.05 sek.) (0.73 sec.) n=250000, m=500000, used=500000, testH

Explanations:

• P - inference graph consisting of few chains ending with problematic vertices

• R - random test with existing solution

• I - test checking correctness of solutions - answer IMPOSSIBLE

• H - maximal test

5 Limits

I suggest to set about 4· running time of the slowest model solutionprog/gat1.cpp as a time limit for this
task. Using this selection, statistics turn out to be as mentioned below:

• Model solutions prog/gat.cpp , prog/gat1.cpp , prog/gat2.pas get 100 points.

• Slower solutions prog/gats1.cpp , prog/gats2.pas get about 55 points.

• The slowest solutionprog/gats0.cpp gets about 16 points.

• The incorrect solutionprog/gatb1.cpp gets about 6 points.

As a memory limit I suggest 96MB.

6

