Analysis: GAM
Game

HISTORY:
e Vv.1.01: 2008.04.08, WTYC - small corrections
e Vv.1.00: 2008.03.31, SzW - first version of this document

dokument systemu SINOL 1.7.2

1 Introduction

The problem is a typical game theory problem. Since bothgrkhave the same distance to the goal (call
that distanc® - this is the distance betwedéfs andB's starting point), it's obvious that both players should
move on a shortest path. Otherwise at ldast 1 moves would be required, in which case the other player
always wins. Since playek moves first, he will always win unless playBrduring the movéd /2 manages

to reach the same square as plaf€in which caseB will win). Note that if D is odd,A always wins.

Because players should move on the shortest path it is edsydtall fields where each player can be
after exactlyp moves. To do this we can use BFS algorithm twice to find digdram A’s andB's starting
point to all other fields. Aftep moves, playeA can be on squares where the distanc&'scstarting point is
p and the distance tB’s starting point isD — p (and vice versa for playds). This finding is the basic notice
that has to be made to correctly solve this problem becaugerothis way it is possible to find the order in
which all states that describe A's and B’s position shoulgtmeessed.

2 Correct solution - time O(n%), memory O(n?)

This solution uses a simple dynamic programming.LL4t be the list of squares where play®can be after
k moves and leLBy be the similar list but for playeB. Let Ty ; betrueif after D/2 — k moves playeA has
a winning strategy if his piece is on the square thattlson theLAp > list and player B’s piece is on the
square that ig-th on theLBp » list. If B has a winning strategy theR, ; should befalse. If D is even then
list LAp > should be equal thBp ». We can easily notice thab, ; is trueif and only ifi # j.

To calculate values in matricdsfor k= 1,2,..,D/2 we have to notice that has a winning strategy if
he can make such a move that after this mBwean make only such moves after whiéthas still winning
strategy. More formally, leNextA; be the list of squares belonging tié\y >, 1 Where the playeA can
move from thei-th square on theAp > list. Let NextBy j be the similar list for the playeB. If for some
i” € NextAy; for all js € NextBy j the value ofrk,li,J, istruethenTm istrue, otherwise it ifalse.

Using the above rule we can calculaiefor k = 1,2,..,D/2 and the playeA has winning strategy in
whole game if and only m-D/ZM is true (if the lists are 1-based). The only problem is to quickly fivxektA
andNextB lists. For some squar,y) where some player can be aftemoves, using results from BFS,
we can easily find all squaré®/,y’) where this player can be aftkr 1 moves. The problem is to find the
position of(x/,yr) on thelLy, 1 list. But because each square can be on only one list when dvecede square
to some list we can also store in some array position of thisusgjon the appropriate list.

In the worst cas® = O(n). Then eacht list can haveO(n) elements and calculating ea@hitakesO(n?)
time. So forD/2 matrices it give©(n®) time complexity. In the best cage= O(n?) and then each list has
constant number of elements so edglean be calculated in constant time and the time complexi@y(ig).
According to this the overall time complexity @(n®).

L lists useO(n?) memory. All Ty arrays in the worst case u€¢n®) memory but there is no need to store
them all. We need only matrices for current and previoas it takesO(n?) memory. According to this the
overall memory complexity i©(n?).

This solution was implemented in C+gam cpp), C (ganD. ¢) and Pascalgant. pas).

3 Wrong solution - time O(n®logn), memory O(n3)

This solution is similar to the correct solution but instedidlA, LB lists andT array it stores values of states
in some dictionary where (ay, ay, b, by) is trueif and only if A has winning strategy when piegds on the
(ax,ay) square and piecB is on the(by, by) square. The implementation of the dictionary adds a fadtor o
logn to the time complexity. Because it has to store all statesas@(n®) memory.

This solution can score 60% of points (it solves first 9 teffis). It was implemented ipans0. cpp file.

4 Wrong solution - time O(n%), memory O(n%)

This solution is similar to the previous one but instead ofidnary it uses 4-dimensional array. It improves
speed tadO(n®) but the memory used B(n).
This solution can score 40% of points (it solves first 6 teb8) and was implemented gans 1. cpp file.

5 Heuristic1

The heuristic is very simple. Outpétif D is odd,B otherwise. It scores 0 points. It is implemented in
gamh0. cpp file.

6 Heuristic?2

This solution divides the rectangle which Hés andB's srarting points in opposite corners into four quarters.
Then it calculates the number of black squares in the qusantert toA’s and next toB's starting points. If
there are more black squares nexBtthen it output#\ because the play@&has less possibilities to move his
piece during first half of the game and playecan use it to avoid meetirig

This solution scores 0 points. It is implementedjambl. cpp file.

7 Heuristic3

It combines Heuristic 1 and 2. D is odd it outputsA otherwise it uses Heuristic B.
This solution scores 0 points. It is implementedamb?2. cpp file.

8 Timeand memory limits

The limit for n was set to 300 because for this value:
e the most important - it is easy to divide solutions that @$g?) and more memory,

o the time of execution for larger tests is long enough to firmdlow solutions.
The memory limit was set t8 MB to divide solutions that us®(n?) and more memory.

9 Tests

Because the answer in this problem is binary, tests weregitogether. Each test with number greater than
1 consists of 3 test files with suffix:

e a- one test without any black squares and two tests with smatliver of black squares (about 3%).

e b - one test with the longest possible route - player has to gbeaight to the end of the board then
two squares down, to the left to the end of the board, two spu@mwn and again to the right, etc. After
this test there are two tests similar to the first one but watine random, black squares removed. On
average one square from each horizontal wall and from orfereéthorizontal walls where removed.

e C- one test with large number of black squares (about 20%).

In each test case playBrstarts in right, bottom corner. But for each test case twawés where created. In
the first variant playeA starts in the top, left corner, in the other it starts one sgt@mthe right. In the result
one of these variants will have even (non-trivial) and oneehadd length of the shortest path.

In total it gives 3 files with 7 tests, each in two variantsttsal 4 tests in each group. So for each group
there are % = 16K possible answers and that is enough to eliminate prograahseturn random answer.

e ganD. | N (1 sek.) Example test from the problem description

e ganocenl-4. 1N (1 sek.) Simple tests for contestants

gaml. | N (1 sek.) 10 small test cases that checks boundary condaimhsorrectness

ganmk- 6. I N (1 sek.) Small tests that should be solved by each algorithm

gan-9. I N(1 sek.) Larger tests that can be solved only by algorithrasisesO(n®) memory or less

e gaml0- 15. I N (6 sek.) Large test that should be solved only by correctiswiu

Time limits where measured on Core 2 Duo 2.2 GHz CPU. In géméren setting time limits the correct
solution should pass all testgans0 solutions should pass first 9 tests (but here key a resouroerisory
because it is not possible to sepa@te®) andO(n%logn)). Thegans1 solution should pass only first 6 tests.

10 Changesin problem description

There were following changes in the problem description:

e The possibility to put more test cases in one file was addealsecthe answer is binary so a lot of tests
is required in each group.

¢ Information how many scores can be earned for differenainsts size was added.

e The example test was changed.

11 Remarks

The author wrote in his problem description that there exastolution that works i®(n*) time that checks
all states. But | think that such solution does not existahbee it can not know in which order states should
be searched.

12 List of work

The following work was done:
e This document was written.

e Example test, 4 tests for contestants and 15 groups of tesesprepared.

Document with description of solutions for contestants wegen.

e Correct solution in three languages, two slow solutionsthnek bad solutions were implemented.

Small changes in problem description were added.

Input generator and verifier were implemented.

