
BOI 2013
Rostock, Germany
April 8 – 12, 2013 b i

Day 2
SPOILER

Tracks
Page 1 of 2

Tracks in the snow (Spoiler)

1 Greedy Approach

Remark 1. The animal that crossed the meadow last can be deduced directly from the input: it is
simply the animal that left the topmost tracks in the upper left (or, alternatively, lower right) corner.

Remark 2. In an optimal solution (using the minimum number of animals) no two animals of the
same type will cross the meadow directly after each other.

Proof. We could simply merge the two paths (go along the first one from the upper left to the lower
right corner, return on the same way and take the second path down) to get a new one, thereby reducing
the number of animals used.

In any step the current animal can visit all the cells reachable from the lower left corner using only
already visited cells and cells containing his respective tracks. Now consider the following greedy
algorithm: at any step we simply visit all reachable cells, as long as there are unvisited cells (this
algorithm processes the animals in reverse order). Note that the animal we choose at each step is
given by the remarks above.

Proposition 3. The described algorithm is correct and uses the minimum number of animals possible.

Proof. We can clearly visit all those cells and since there is a way from source to target completely
covered with tracks from the last animal we can simply go back to the source and follow that way.
Thus the result of the algorithm corresponds to a legal sets of animal moves.

We now show by induction that, for any n, after having used n animals we have visited all the cells
possible. The case n = 1 follows by definition. Now assume n ≥ 2. Let S be the set of all cells that
could be reached by using n animals but isn’t visited by the above algorithm using only n animals.
If S = ∅ we’re finished. Otherwise take the cell s with the minium distance to the upper left corner
(measured in the minimum number of cells on any valid path to this cell). Then by choice all other
cells on this path are visited by our algorithm. If the cell considered were reachable by less than
n animals, we would have already visited it. So according to the remarks above the topmost track
on the cell is the same we are currently considering in our algorithm, so our algorithm will visit it
contradicting the choice of s. So S is indeed empty and thus our algorithm is indeed optimal.

A simple way to implement this algorithm is to set all cells visited so far to a
special “Don’t care” character (e.g.‘*’). This algorithm needs O(n2m2) steps for
an n×m-meadow and suffices for the first subtask. The figure on the right shows
that there are indeed up to Ω(mn) animals needed.



BOI 2013
Rostock, Germany
April 8 – 12, 2013 b i

Day 2
SPOILER

Tracks
Page 2 of 2

2 Linear solution

Remove from the graph considered before all edges between cells with different topmost tracks. Now
we can contract all those components to single nodes and add the deleted edges thereby obtaining a
new graph H . For simplicity number the nodes from 1 to k where node 1 represents the component
containing the upper left corner.

1 2

34

5

H

1

2

3

4 5

TH

Figure 1: An example of tracks, the respective graph and a possible breadth-first-tree

This graph is clearly bipartite with a bicoloring given by the assignment component 7→ topmost track.
Consider the breadth-first tree TH (starting at node 1). Note that both H and TH can be calculated in
time O(mn).

Proposition 4. The minimum number a of animals needed to create the given pattern equals the depth
of TH , i.e. a = 1 + maxv∈V (H) dist(1, v).

Proof. We show by induction that the cells visited by the previously described greedy algorithm
after using n animals are exactly the cells represented by the nodes within distance n − 1 from the
root. Again the case n = 1 is trivial. For n ≥ 2 we can visit all the nodes “in the layer below”: since
we have E(H) ⊇ E(TH) the bicoloring of H gives a bicoloring of TH and thus all the nodes in the
next layer have the same, namely the currently active, color, and are visited by the greedy algorithm.

Furthermore the greedy algorithm doesn’t reach any other nodes: the nodes visited so far are the
previous layers. Assume component C can be visited and take any path from the root to C and throw
away all the parts up to the last node that is already visited. The remaining nodes have to be of the
currently active color, i.e. they belong the component C. Thus if C hasn’t been visited before it is child
of a node visited before and will be visited in this step.

This suffices for an O(mn) solution (i.e. linear in the size of the input). However, instead of explicitely
calculating components one can assign weights to all the edges in the original graph: any edge between
two nodes of the same color gets weight 0 and any other edge weight 1. Then clearly the maximum
distance of any node to the root (the upper left corner) equals a. The distances can be calculated by
Dijksta’s algorithm where we can use a deque instead of a priority_queue (0/1-Dijkstra) to achieve
a linear running time.


