Ballmachine

General Considerations

e Because of the queries of type “insert k£ balls”, you might think that you have to insert multiple
balls at once to be quick enough. But as there can never be more than N balls in the machine,
and they are only removed one by one, only O(Q) balls are ever added, so it is fine to insert
them one by one.

e You can pre-compute for each node the smallest number inside of its subtree. This takes O(N)
with one DFS.

e Now you can easily simulate the whole process always taking one step at a time. This approach
takes O(QDR) time, where D is the depth of the tree, and R the maximum degree of any node.
On the balanced-tree lower limit, it is D = O(log(N)) and R = 2, so the total time is O(N log(N))
which is fine. But on a degenerate tree (i.e. a line), it becomes O(N?) which is too slow.

Fast Insertion

e After sorting the (direct) childs of each node by lowest number in their respective subtree, do
another DFS to compute the post-order-index of each node.

e These post-order-indices are the priorities, by which nodes are getting filled by the add-queries.
Therefore you can keep all empty nodes in an appropriate datastructure that allowes you to find
the node to be filled in O(log(N)) time. STL-set or STL-priority-queue will both work here.

Fast Deletion

e Let p(x) denote the parent of node x. You can precompute p(2k)(x) for all z and all appropriate
k. This will take O(N log(N)) space, and with a little DP O(N log(N)) time.

e Now you can speed up the the roll-down part of a removal query to only take O(log(D)) time.



