
Andrew Stankevich Contest 24, Northern Grand Prix

Petrozavodsk, February 3, 2007

Problem A. Cookies
Input file: cookies.in

Output file: cookies.out

Time limit: 2 seconds
Memory limit: 64 megabytes

Santa Claus is planning to bring gifts to n children. He has m cookies and is planning to divide them to
n piles. However, as usually problems come unexpected. The child gets unhappy if somebody gets more
cookies than him.

Each child is characterized by his greediness, the greediness of the i-th child is gi. The unhappines of the
i-th child is equal to giai where ai is the number of children that get more cookies than him.

Now Santa wants to divide cookies in such a way that the total unhappiness is minimized. Each child
must get at least one cookie. Santa would like to give away all m cookies he has. Help him to do so.

Input

The first line of the input file contains n and m (1 ≤ n ≤ 30, n ≤ m ≤ 5000). The second line contains
n integer numbers g1, g2, . . . , gn (1 ≤ gi ≤ 107).

Output

Print the minimal possible unhappiness at the first line of the output file. The second line must contain n
integer numbers — the number of cookies the corresponding child must get. If there are several solutions,
output any one.

Example

cookies.in cookies.out

3 20

1 2 3

2

2 9 9

4 9

2 1 5 8

7

2 1 3 3

Page 1 of 11

Andrew Stankevich Contest 24, Northern Grand Prix

Petrozavodsk, February 3, 2007

Problem B. Ear Decomposition

Input file: ear.in

Output file: ear.out

Time limit: 2 seconds
Memory limit: 64 megabytes

Consider a connected undirected graph with no loops or parallel edges. Let us call the number of edges
incident to vertex v its degree and denote it as deg v.

A simple path v0 − v1 − . . .− vk such that deg v0 ≥ 2, deg vk ≥ 2, and for all i from 1 to k − 1 deg vi = 2,
is called an ear. In particular, if k = 1, an edge v0 − v1 connecting two vertices of degree at least 2 is
also an ear. The vertices v0 and vk can coincide.

Let us consider an ear v0 − v1 − . . . − vk and remove all of its edges and intermediate vertices
(v1, v2, . . . , vk−1) from the graph. This operation is called ear cut. If the ear has no intermediate vertices,
it can be cut by simply removing its edge.

The ear decomposition of the graph G is the sequence of ear cuts, such that after each cut the graph
remains connected, and after the last cut the remaining graph consists of a single vertex.

Given graph G find its ear decomposition or report that it doesn’t have one.

Input

The first line of the input file contains n and m — the number of vertices and edges of G respectively
(2 ≤ n ≤ 20 000, n − 1 ≤ m ≤ 100 000). Let the vertices be numbered from 1 to n. The following m
lines describe graph edges, each line contains two integer numbers — the numbers of vertices connected
by the corresponding edge. It is guaranteed that G is connected. No two vertices of G are connected by
more than one edge. No edge connects a vertex to itself.

Output

The first line of the output file must contain d — the number of cuts in the ear decomposition of G. The
following d lines must describe cuts. Each cut must be described by k — the number of edges in the
corresponding ear, followed by k + 1 numbers — the vertices of the ear as they appear along it.

If there is no ear decomposition of the given graph, output d = −1.

Example

ear.in ear.out

5 8

1 2

2 3

3 5

5 1

2 4

4 1

3 4

4 5

4

1 2 3

2 4 3 5

2 4 5 1

3 4 1 2 4

3 2

1 2

1 3

-1

Page 2 of 11

Andrew Stankevich Contest 24, Northern Grand Prix

Petrozavodsk, February 3, 2007

Problem C. ePig

Input file: epig.in

Output file: epig.out

Time limit: 2 seconds
Memory limit: 64 megabytes

Andrew and Ann are developing the new P2P software network ePig. The network is intended to be used
for sharing files. In this problem you will have to simulate the operation of the network when distributing
one large file.

Let there be n clients numbered from 1 to n. Initially the whole file is provided by client 1. All other clients
wish to get this file. The file is split into k chunks numbered from 1 to k. The transfer consists of a series
of rounds. Each round takes one minute and the bandwidth of the connection of each client is enough to
transform one chunk to the client and transform one chunk away from the client (simultaneously). After
a client gets some chunk it starts to provide it to other clients.

Before a round each client decides which chunk it will request. The client will request the chunk that is
provided by the smallest number of clients (except those chunks that it already has). If there are several
such chunks, it selects the one which has the smaller number.

After that the clients make chunk requests. Each client selects the client which has the chunk that it
decided to request, if there are several such clients, the client which provides the smallest number of
chunks is selected. If there are still several possible variants, the client which has the smallest number is
selected.

Each client considers all requests and satisfies one of them. The request satisfied by client X is the one
which comes from the most valued client. The value of the client is the number of chunks it allowed X
to be downloaded from him in the past. If there are several equally valued clients, X gives the chunk to
the one which has the smallest number of chunks available. If there are still several possible variants, the
chunk is provided to the client which has the smallest number.

After the requests that will be satisfied are selected the round begins. The clients whose requests were
rejected do not download anything this round, all other clients download the chunk they requested. After
that the new round starts.

Given n and k, you have to find for each client, what is the number of rounds before it gets the whole
file.

Input

The first line of the input file contains n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 200).

Output

Output n − 1 numbers — for each client except the first one print the number of rounds before it gets
the whole file.

Example

epig.in epig.out

3 2 3 3

The file distribution will proceed as follows. At the first round clients 2 and 3 will request chunk 1 from
client 1. Request from client 2 will be satisfied. After that clients 2 and 3 will request chunk 2 from client
1. Client 3 will be satisfied. On the third round client 2 will request chunk 2 from client 3 and client 3
will request chunk 1 from client 2, both requests will be satisfied, and both will have the whole file.

Page 3 of 11

Andrew Stankevich Contest 24, Northern Grand Prix

Petrozavodsk, February 3, 2007

Problem D. Irreducible Young Diagrams

Input file: irreducible.in

Output file: irreducible.out

Time limit: 2 seconds
Memory limit: 64 megabytes

Young diagram is a well known way to describe a partition of a positive integer number. A partition of a
number n is a representation as a sum of one or several integer numbers n = m1 + m2 + . . . + mk where
m1 ≥ m2 ≥ . . . ≥ mk.

A diagram consists of n boxes arranged in k rows, where k is the number of terms in the partition. A
row representing the number mi contains mi boxes. All rows are left-aligned, and sorted from longest to
shortest.

The diagram on the picture below corresponds to the partition 9 = 5 + 2 + 2.

Let us describe a way to transform the Young diagram. You are allowed to choose two adjacent boxes
in the diagram and remove them. The only restriction is that after the process the remaining diagram
must be a valid Young diagram.

For example, removing the last boxes of the second and the third row from the diagram above, we get
the diagram for the partition 7 = 5 + 1 + 1.

Removing the last two boxes of the first row from the same diagram we get the diagram for the partition
7 = 3 + 2 + 2.

There are not other valid ways to transform the given Young diagram.

The diagram that cannot be transformed in the above way is called irreducible. Clearly, an empty diagram
is irreducible.

Each diagram can be transformed until it is irreducible. Generally there may be several possible ways
of transforming the diagram. You are given a Young diagram. You have to find all possible irreducible
diagrams that the given one can be transformed to.

Input

The first line of the input file contains k — the number of rows in the diagram (1 ≤ k ≤ 100 000). The
second line contains k numbers: m1,m2, . . . ,mk. The sum n = m1 + m2 + . . . + mk doesn’t exceed 108.

Page 4 of 11

Andrew Stankevich Contest 24, Northern Grand Prix

Petrozavodsk, February 3, 2007

Output

The first line of the output file must contain one number l — the number of irreducible diagrams the
given diagram can be transformed to. The following l lines must describe these diagrams: each line must
contain t — the number of rows in the corresponding diagram, followed by t numbers — the number of
boxes in corresponding rows.

Example

irreducible.in irreducible.out

3

5 2 2

1

1 1

1

2

1

0

Page 5 of 11

Andrew Stankevich Contest 24, Northern Grand Prix

Petrozavodsk, February 3, 2007

Problem E. Permutation Reconstruction
Input file: permutation.in

Output file: permutation.out

Time limit: 2 seconds
Memory limit: 64 megabytes

The famous Ulam Conjecture claims that if we take a graph G and consider a multiset Gmin of graphs
that are obtained from G by removing one of its vertices and all edges incident to it, then the graph
G can be reconstructed from Gmin. The Ulam conjecture is still not proven and no counterexample is
known.

In this problem we will consider a similar problem for permutations. Consider a permutation
a = 〈a1, a2, . . . an〉 of numbers from 1 to n. Let us denote as a/i the permutation of n − 1 numbers
obtained from a by removing a number i and decreasing all numbers greater than i by one.

For example, if a = 〈1, 3, 5, 2, 6, 4〉 then a/2 = 〈1, 2, 4, 5, 3〉.

You are given a/1, a/2, . . . , a/n in some arbitrary order. You must restore the original permutation a.

Input

The first line of the input file contains n — the order of the initial permutation (5 ≤ n ≤ 300). The
following n lines contain n − 1 numbers each and specify a/i for all i in some order.

Output

Output n integer numbers — the permutation a. It is guaranteed that such permutation exists.

Example

permutation.in permutation.out

6

1 3 5 2 4

1 3 4 2 5

1 2 4 5 3

2 4 1 5 3

1 4 2 5 3

1 3 2 5 4

1 3 5 2 6 4

In this example the factors are given in the following order: a/6, a/4, a/2, a/1, a/3 and a/5.

Page 6 of 11

Andrew Stankevich Contest 24, Northern Grand Prix

Petrozavodsk, February 3, 2007

Problem F. Decoding Prefix Codes

Input file: prefix.in

Output file: prefix.out

Time limit: 2 seconds
Memory limit: 64 megabytes

A code is a mapping c : Σ → Γ∗ of characters of the given alphabet Σ to words of some another alphabet
Γ. In this problem Σ consists of the first 10 lowercase letters of the English alphabet, and Γ = {0, 1}.

The code is called prefix-free or simply prefix, if no code word is a prefix of another word. For example,
the code c(‘a’) = 00, c(‘b’) = 01, c(‘c’) = 1 is prefix, but the code c(‘a’) = 0, c(‘b’) = 01 is not.

You are given a text and a string that is obtained from it by encoding it with some prefix code. You
must restore the code that was used to encode the text. If there are several possible variants, output any
one.

Input

The first line of the input file contains the given text. Its length does not exceed 1000. It contains only
letters ‘a’–‘z’ of the English alphabet. There are at most 10 different characters in the given text.

The second line contains the encoded version of the given text. It is guaranteed that it is obtained from
the given text by encoding by some prefix code. No word in the code used has length exceeding 10.

Output

Output the prefix code that could be used to encode the text to get the given encoded version. The
number of lines must be equal to the number of different characters in the given text. Each line must
contain a character followed by a space and the code word for this character.

Example

prefix.in prefix.out

hello

0100111000

e 001

h 01

l 1

o 000

Page 7 of 11

Andrew Stankevich Contest 24, Northern Grand Prix

Petrozavodsk, February 3, 2007

Problem G. Hungry Queen

Input file: queen.in

Output file: queen.out

Time limit: 2 seconds
Memory limit: 64 megabytes

Consider an infinite chessboard with cells identified by pairs of integer numbers: (x, y). The black queen
is initially located at the cell (0, 0). The queen can move horizontally, vertically or diagonally, but cannot
move downwards. That is, after each turn the y-coordinate of the cell where the queen is after the turn
must be greater or equal to the y-coordinate of the cell where it was before the turn.

There are n white pawns on the board, they are located at cells (xi, yi), where yi > 0.

The queen wants to take as many pawns as possible. White pawns do not move, and the queen can make
as many consecutive turns as needed. However, each turn the queen must take a pawn.

Find out what is the maximal number of pawns the queen can take, and which pawns it must take to
achieve this number.

Input

The first line of the input file contains n (1 ≤ n ≤ 50 000). The following n lines contain two integer
numbers each — the coordinates (xi, yi) of the pawns (|xi| ≤ 109, 0 < yi ≤ 109). No two pawns occupy
the same position.

Output

The first line of the output file must contain one integer number k — the number of pawns the queens
can take. The second line must contain k integer numbers — the numbers of the pawns the queen can
take in order she must do it. The pawns are numbered starting from 1 in order they are given in the
input file.

Example

queen.in queen.out

4

1 1

4 3

-1 3

4 2

3

1 3 2

Page 8 of 11

Andrew Stankevich Contest 24, Northern Grand Prix

Petrozavodsk, February 3, 2007

Problem H. Boat Race
Input file: race.in

Output file: race.out

Time limit: 2 seconds
Memory limit: 64 megabytes

Jerry is planning to take part in a boat race. The race will take place in a long narrow canal. The canal
runs from east to west, the banks of the canal have a form of a polyline.

Let us introduce the coordinate system in such a way that the western end of the canal has x-coordinate
equal to 0, the eastern end of the canal has x-coordinate equal to l. The polyline describing the southern
bank of the canal has vertices at points (x0, y0), (x1, y1), . . . , (xn, yn) where 0 = x0 < x1 < . . . < xn = l.
The northern bank has the same form, but is w units to the north, so it is described by a polyline with
coordinates (x0, y0 + w), (x1, y1 + w), . . . , (xn, yn + w).

Jerry’s boat can start the race at any point of a start line (a segment (0, y0) − (0, y0 + w)) and end the
race at any point of the finish line (a segment (l, yn) − (l, yn + w)). The boat is so small, that it can be
considered a point. When moving a boat can “touch” the banks of the canal, moving just along them.

To increase his chances of wining, Jerry wants to know what is the shortest path from the start line to
the finish line.

Input

The first line of the input file contains n (1 ≤ n ≤ 100). The following n + 1 lines contain a pair of
integer numbers (xi, yi) each and describe the southern bank of the canal (0 = x0 < x1 < . . . < xn ≤ 104,
|yi| ≤ 104). The last line of the input file contains integer number w (1 ≤ w ≤ 104).

Output

Output one floating point number — the length of the shortest path through the canal from the start
line to the finish line. Your answer must be accurate up to 10−6.

Example

race.in race.out

3

0 0

2 2

3 -1

5 0

2

5.41421356237309505

Page 9 of 11

Andrew Stankevich Contest 24, Northern Grand Prix

Petrozavodsk, February 3, 2007

Problem I. Longest Common Subpair

Input file: subpair.in

Output file: subpair.out

Time limit: 2 seconds
Memory limit: 64 megabytes

A pair of strings (α, β) is called a subpair of a string γ if γ = γ1αγ2βγ3 for some (possibly empty) strings
γ1, γ2 and γ3. The length of the pair is the sum of lengths of its strings: |(α, β)| = |α| + |β|.

Given two strings ξ and η find their longest common subpair, that is — such pair (α, β) that it is a
subpair of both ξ and η and its length is greatest possible.

Input

Input file contains two strings ξ and η, one on a line. Both strings contain only small letters of the
English alphabet. Both string are not empty. The length of each string doesn’t exceed 3000.

Output

Output α on the first line of the output file and β on the second line.

Example

subpair.in subpair.out

abacabadabacaba

acabacadacabaca

acaba

abaca

ab

bc

b

Page 10 of 11

Andrew Stankevich Contest 24, Northern Grand Prix

Petrozavodsk, February 3, 2007

Problem J. New Year Tree Transportation

Input file: tree.in

Output file: tree.out

Time limit: 2 seconds
Memory limit: 64 megabytes

People of Byteland celebrate New Year. Unlike people of most other countries, they do not decorate
fir-trees for the New Year celebration. Instead they decorate binary trees. A binary tree is a rooted tree
such that every node has at most two children.

A nice binary tree with n nodes was prepared to be set up on the main square of Byteland capital. However
first it must be transported from the place where it was grown up to the capital. The transportation will
be arranged by the railroad. But it turned out that the standard railroad car can carry the tree only if
it has at most k nodes.

So it was decided to cut several edges of the tree so that each of the remaining connected parts had at
most k nodes. After the tree is transported to the capital it would be reassembled and set up. Due to
security reasons each car must carry only one tree part.

Of course the department of transportation of Byteland would like to use as few cars as possible to
transport the tree. However, minimizing the number of cars seemed to be too difficult problem. Therefore
the minister of transportation ordered to cut the tree in such a way that the number of cars needed at
least did not exceed d2n/ke.

But the people who are transporting the tree couldn’t solve even this problem. Help them! Given a
binary tree find the way to cut some of its edges in such a way that each of the remaining connected
parts had at most k nodes and the number of parts didn’t exceed d2n/ke.

Input

The first line of the input file contains n — the number of nodes of the tree, and k — the maximal
capacity of the car (1 ≤ n ≤ 100 000, 1 ≤ k ≤ n). The following n− 1 lines describe the edges of the tree.
Each edge is described by two integer numbers: the parent node and the child node. The given tree is
guaranteed to be a binary tree. Nodes are numbered from 1 to n, root has number 1.

Output

The first line of the output file must contain l — the number of edges that must be cut. The second line
must contain l integer numbers — the edges to be cut. Edges are numbered from 1 to n − 1 as they are
listed in the input file.

If the tree cannot be cut in the described way, output l = −1.

Example

tree.in tree.out

5 2

1 2

1 5

5 3

5 4

2

2 4

Page 11 of 11

