
Benelux Algorithm Programming Contest (BAPC) 2024

Solutions presentation

The BAPC 2024 jury
October 27, 2024

J: Jumbled Scoreboards
Problem author: Lammert Westerdijk

Problem: Given a list of scoreboards, determine whether they are chronological: i.e., if these
scoreboards can occur in this order in a single match.

Observation: The list of scoreboards is chronological if and only if a list of scores is non-decreasing
for both teams.

Solution: For each list, check whether each pair of consecutive scores is non-decreasing.
Running time: O(n).

Statistics: 60 submissions, 56 accepted

J: Jumbled Scoreboards
Problem author: Lammert Westerdijk

Problem: Given a list of scoreboards, determine whether they are chronological: i.e., if these
scoreboards can occur in this order in a single match.

Observation: The list of scoreboards is chronological if and only if a list of scores is non-decreasing
for both teams.

Solution: For each list, check whether each pair of consecutive scores is non-decreasing.
Running time: O(n).

Statistics: 60 submissions, 56 accepted

J: Jumbled Scoreboards
Problem author: Lammert Westerdijk

Problem: Given a list of scoreboards, determine whether they are chronological: i.e., if these
scoreboards can occur in this order in a single match.

Observation: The list of scoreboards is chronological if and only if a list of scores is non-decreasing
for both teams.

Solution: For each list, check whether each pair of consecutive scores is non-decreasing.

Running time: O(n).

Statistics: 60 submissions, 56 accepted

J: Jumbled Scoreboards
Problem author: Lammert Westerdijk

Problem: Given a list of scoreboards, determine whether they are chronological: i.e., if these
scoreboards can occur in this order in a single match.

Observation: The list of scoreboards is chronological if and only if a list of scores is non-decreasing
for both teams.

Solution: For each list, check whether each pair of consecutive scores is non-decreasing.
Running time: O(n).

Statistics: 60 submissions, 56 accepted

J: Jumbled Scoreboards
Problem author: Lammert Westerdijk

Problem: Given a list of scoreboards, determine whether they are chronological: i.e., if these
scoreboards can occur in this order in a single match.

Observation: The list of scoreboards is chronological if and only if a list of scores is non-decreasing
for both teams.

Solution: For each list, check whether each pair of consecutive scores is non-decreasing.
Running time: O(n).

Statistics: 60 submissions, 56 accepted

A: “Aaawww...” or “Aaayyy!!!”
Problem author: Freek Henstra

Problem: Determine the final rank of your favourite team based on audience chants.

Solution: Simulate the resolving of the scoreboard. For each audience chant:
• Look at the lowest ranking team with pending submissions.
• If the audience chant ends with exclamation marks, move the team up the list

(number of ys − 3) positions.
Simplification: For each team, you only need the number of pending submissions and their position,

not the full state of the scoreboard.
Running time: O(n2m). But the limits on n and m are 100, so could even be as slow as O(n2m2).

Statistics: 90 submissions, 44 accepted, 12 unknown

A: “Aaawww...” or “Aaayyy!!!”
Problem author: Freek Henstra

Problem: Determine the final rank of your favourite team based on audience chants.
Solution: Simulate the resolving of the scoreboard. For each audience chant:

• Look at the lowest ranking team with pending submissions.
• If the audience chant ends with exclamation marks, move the team up the list

(number of ys − 3) positions.

Simplification: For each team, you only need the number of pending submissions and their position,
not the full state of the scoreboard.

Running time: O(n2m). But the limits on n and m are 100, so could even be as slow as O(n2m2).

Statistics: 90 submissions, 44 accepted, 12 unknown

A: “Aaawww...” or “Aaayyy!!!”
Problem author: Freek Henstra

Problem: Determine the final rank of your favourite team based on audience chants.
Solution: Simulate the resolving of the scoreboard. For each audience chant:

• Look at the lowest ranking team with pending submissions.
• If the audience chant ends with exclamation marks, move the team up the list

(number of ys − 3) positions.
Simplification: For each team, you only need the number of pending submissions and their position,

not the full state of the scoreboard.

Running time: O(n2m). But the limits on n and m are 100, so could even be as slow as O(n2m2).

Statistics: 90 submissions, 44 accepted, 12 unknown

A: “Aaawww...” or “Aaayyy!!!”
Problem author: Freek Henstra

Problem: Determine the final rank of your favourite team based on audience chants.
Solution: Simulate the resolving of the scoreboard. For each audience chant:

• Look at the lowest ranking team with pending submissions.
• If the audience chant ends with exclamation marks, move the team up the list

(number of ys − 3) positions.
Simplification: For each team, you only need the number of pending submissions and their position,

not the full state of the scoreboard.
Running time: O(n2m). But the limits on n and m are 100, so could even be as slow as O(n2m2).

Statistics: 90 submissions, 44 accepted, 12 unknown

A: “Aaawww...” or “Aaayyy!!!”
Problem author: Freek Henstra

Problem: Determine the final rank of your favourite team based on audience chants.
Solution: Simulate the resolving of the scoreboard. For each audience chant:

• Look at the lowest ranking team with pending submissions.
• If the audience chant ends with exclamation marks, move the team up the list

(number of ys − 3) positions.
Simplification: For each team, you only need the number of pending submissions and their position,

not the full state of the scoreboard.
Running time: O(n2m). But the limits on n and m are 100, so could even be as slow as O(n2m2).

Statistics: 90 submissions, 44 accepted, 12 unknown

G: Grocery Greed
Problem author: Jorke de Vlas

Problem: Given a list of prices, divide them into groups and decide for each group whether to
round the price of the group to a multiple of 5 cents, to minimize the total price.

Observation 1: Increasing or decreasing a price by a multiple of 5 cents will always change the final
answer by this same amount.

• We may reduce all prices modulo 5 cents, as long as we add the differences to the
final result.

Observation 2: It is always optimal to put prices of 0, 1 or 2 cents in their own group and round this
down to 0 cents.

Remaining case: All prices are 3 or 4 cents.

G: Grocery Greed
Problem author: Jorke de Vlas

Problem: Given a list of prices, divide them into groups and decide for each group whether to
round the price of the group to a multiple of 5 cents, to minimize the total price.

Observation 1: Increasing or decreasing a price by a multiple of 5 cents will always change the final
answer by this same amount.

• We may reduce all prices modulo 5 cents, as long as we add the differences to the
final result.

Observation 2: It is always optimal to put prices of 0, 1 or 2 cents in their own group and round this
down to 0 cents.

Remaining case: All prices are 3 or 4 cents.

G: Grocery Greed
Problem author: Jorke de Vlas

Problem: Given a list of prices, divide them into groups and decide for each group whether to
round the price of the group to a multiple of 5 cents, to minimize the total price.

Observation 1: Increasing or decreasing a price by a multiple of 5 cents will always change the final
answer by this same amount.

• We may reduce all prices modulo 5 cents, as long as we add the differences to the
final result.

Observation 2: It is always optimal to put prices of 0, 1 or 2 cents in their own group and round this
down to 0 cents.

Remaining case: All prices are 3 or 4 cents.

G: Grocery Greed
Problem author: Jorke de Vlas

Problem: Given a list of prices, divide them into groups and decide for each group whether to
round the price of the group to a multiple of 5 cents, to minimize the total price.

Observation 1: Increasing or decreasing a price by a multiple of 5 cents will always change the final
answer by this same amount.

• We may reduce all prices modulo 5 cents, as long as we add the differences to the
final result.

Observation 2: It is always optimal to put prices of 0, 1 or 2 cents in their own group and round this
down to 0 cents.

Remaining case: All prices are 3 or 4 cents.

G: Grocery Greed
Problem author: Jorke de Vlas

Problem: Given a list of prices, divide them into groups and decide for each group whether to
round the price of the group to a multiple of 5 cents, to minimize the total price.

Observation 1: Increasing or decreasing a price by a multiple of 5 cents will always change the final
answer by this same amount.

• We may reduce all prices modulo 5 cents, as long as we add the differences to the
final result.

Observation 2: It is always optimal to put prices of 0, 1 or 2 cents in their own group and round this
down to 0 cents.

Remaining case: All prices are 3 or 4 cents.

G: Grocery Greed
Problem author: Jorke de Vlas

Problem: Given a list of prices, divide them into groups and decide for each group whether to
round the price of the group to a multiple of 5 cents, to minimize the total price.

Remaining case: All prices are 3 or 4 cents.

Solution: • As long as there is both a price of 3 cents and a price of 4 cents, put them
together in a group and round to 5 cents.

• If only prices of 3 cents remain: make as many pairs as possible and round them
down to 5 cents. If a single price of 3 cents remains, do not round it.

• If only prices of 4 cents remain: make as many triples as possible and round them
down to 10 cents. If one or two prices of 4 cents remain, do not round them.

Running time: O(n).
Pitfall: Be careful converting between floating point numbers and integers!

• Casting 100*x (which is float) to int is flooring, so add 0.5 or use round().
• Alternatively, skip the decimal point when parsing the input values to int.

Statistics: 111 submissions, 44 accepted, 10 unknown

G: Grocery Greed
Problem author: Jorke de Vlas

Problem: Given a list of prices, divide them into groups and decide for each group whether to
round the price of the group to a multiple of 5 cents, to minimize the total price.

Remaining case: All prices are 3 or 4 cents.
Solution: • As long as there is both a price of 3 cents and a price of 4 cents, put them

together in a group and round to 5 cents.

• If only prices of 3 cents remain: make as many pairs as possible and round them
down to 5 cents. If a single price of 3 cents remains, do not round it.

• If only prices of 4 cents remain: make as many triples as possible and round them
down to 10 cents. If one or two prices of 4 cents remain, do not round them.

Running time: O(n).
Pitfall: Be careful converting between floating point numbers and integers!

• Casting 100*x (which is float) to int is flooring, so add 0.5 or use round().
• Alternatively, skip the decimal point when parsing the input values to int.

Statistics: 111 submissions, 44 accepted, 10 unknown

G: Grocery Greed
Problem author: Jorke de Vlas

Problem: Given a list of prices, divide them into groups and decide for each group whether to
round the price of the group to a multiple of 5 cents, to minimize the total price.

Remaining case: All prices are 3 or 4 cents.
Solution: • As long as there is both a price of 3 cents and a price of 4 cents, put them

together in a group and round to 5 cents.
• If only prices of 3 cents remain: make as many pairs as possible and round them

down to 5 cents. If a single price of 3 cents remains, do not round it.

• If only prices of 4 cents remain: make as many triples as possible and round them
down to 10 cents. If one or two prices of 4 cents remain, do not round them.

Running time: O(n).
Pitfall: Be careful converting between floating point numbers and integers!

• Casting 100*x (which is float) to int is flooring, so add 0.5 or use round().
• Alternatively, skip the decimal point when parsing the input values to int.

Statistics: 111 submissions, 44 accepted, 10 unknown

G: Grocery Greed
Problem author: Jorke de Vlas

Problem: Given a list of prices, divide them into groups and decide for each group whether to
round the price of the group to a multiple of 5 cents, to minimize the total price.

Remaining case: All prices are 3 or 4 cents.
Solution: • As long as there is both a price of 3 cents and a price of 4 cents, put them

together in a group and round to 5 cents.
• If only prices of 3 cents remain: make as many pairs as possible and round them

down to 5 cents. If a single price of 3 cents remains, do not round it.
• If only prices of 4 cents remain: make as many triples as possible and round them

down to 10 cents. If one or two prices of 4 cents remain, do not round them.

Running time: O(n).
Pitfall: Be careful converting between floating point numbers and integers!

• Casting 100*x (which is float) to int is flooring, so add 0.5 or use round().
• Alternatively, skip the decimal point when parsing the input values to int.

Statistics: 111 submissions, 44 accepted, 10 unknown

G: Grocery Greed
Problem author: Jorke de Vlas

Problem: Given a list of prices, divide them into groups and decide for each group whether to
round the price of the group to a multiple of 5 cents, to minimize the total price.

Remaining case: All prices are 3 or 4 cents.
Solution: • As long as there is both a price of 3 cents and a price of 4 cents, put them

together in a group and round to 5 cents.
• If only prices of 3 cents remain: make as many pairs as possible and round them

down to 5 cents. If a single price of 3 cents remains, do not round it.
• If only prices of 4 cents remain: make as many triples as possible and round them

down to 10 cents. If one or two prices of 4 cents remain, do not round them.
Running time: O(n).

Pitfall: Be careful converting between floating point numbers and integers!
• Casting 100*x (which is float) to int is flooring, so add 0.5 or use round().
• Alternatively, skip the decimal point when parsing the input values to int.

Statistics: 111 submissions, 44 accepted, 10 unknown

G: Grocery Greed
Problem author: Jorke de Vlas

Problem: Given a list of prices, divide them into groups and decide for each group whether to
round the price of the group to a multiple of 5 cents, to minimize the total price.

Remaining case: All prices are 3 or 4 cents.
Solution: • As long as there is both a price of 3 cents and a price of 4 cents, put them

together in a group and round to 5 cents.
• If only prices of 3 cents remain: make as many pairs as possible and round them

down to 5 cents. If a single price of 3 cents remains, do not round it.
• If only prices of 4 cents remain: make as many triples as possible and round them

down to 10 cents. If one or two prices of 4 cents remain, do not round them.
Running time: O(n).

Pitfall: Be careful converting between floating point numbers and integers!
• Casting 100*x (which is float) to int is flooring, so add 0.5 or use round().
• Alternatively, skip the decimal point when parsing the input values to int.

Statistics: 111 submissions, 44 accepted, 10 unknown

G: Grocery Greed
Problem author: Jorke de Vlas

Problem: Given a list of prices, divide them into groups and decide for each group whether to
round the price of the group to a multiple of 5 cents, to minimize the total price.

Remaining case: All prices are 3 or 4 cents.
Solution: • As long as there is both a price of 3 cents and a price of 4 cents, put them

together in a group and round to 5 cents.
• If only prices of 3 cents remain: make as many pairs as possible and round them

down to 5 cents. If a single price of 3 cents remains, do not round it.
• If only prices of 4 cents remain: make as many triples as possible and round them

down to 10 cents. If one or two prices of 4 cents remain, do not round them.
Running time: O(n).

Pitfall: Be careful converting between floating point numbers and integers!
• Casting 100*x (which is float) to int is flooring, so add 0.5 or use round().
• Alternatively, skip the decimal point when parsing the input values to int.

Statistics: 111 submissions, 44 accepted, 10 unknown

E: Extraterrestrial Exploration
Problem author: Wietze Koops

Problem: Given query access to a sorted list of integers o1, o2 . . . , on, determine x , y , z that
maximize √

|ox − oy | +
√

|oy − oz | +
√

|oz − ox |.

Naive solution: Check all possible triples and compute the maximum. This is O(n3), which is too slow,
but more importantly, there are way too few queries to determine the values of all oi !

E: Extraterrestrial Exploration
Problem author: Wietze Koops

Problem: Given query access to a sorted list of integers o1, o2 . . . , on, determine x , y , z that
maximize √

|ox − oy | +
√

|oy − oz | +
√

|oz − ox |.

Naive solution: Check all possible triples and compute the maximum. This is O(n3), which is too slow,
but more importantly, there are way too few queries to determine the values of all oi !

E: Extraterrestrial Exploration
Problem author: Wietze Koops

Problem: Given query access to a sorted list of integers o1, o2 . . . , on, determine x , y , z that
maximize √

|ox − oy | +
√

|oy − oz | +
√

|oz − ox |.

Observation 1: It is always optimal to include o1 and on. Thus we only need to find y that maximizes√
|o1 − oy | +

√
|oy − on| +

√
|on − o1|.

Observation 2: The function
√

|o1 − oy | +
√

|oy − on| is concave and symmetric around 1
2 (o1 + on).

The maximum is attained when oy is closest to 1
2 (o1 + on).

Solution: Query o1 and on, followed by a binary search to find the value oy closest to 1
2 (o1 + on).

Alternatively: Find the maximum with ternary search. Need to be somewhat smart with queries to
stay within the limit.

Pitfall: Make sure to return distinct indices!

E: Extraterrestrial Exploration
Problem author: Wietze Koops

Problem: Given query access to a sorted list of integers o1, o2 . . . , on, determine x , y , z that
maximize √

|ox − oy | +
√

|oy − oz | +
√

|oz − ox |.

Observation 1: It is always optimal to include o1 and on. Thus we only need to find y that maximizes√
|o1 − oy | +

√
|oy − on| +

√
|on − o1|.

Observation 2: The function
√

|o1 − oy | +
√

|oy − on| is concave and symmetric around 1
2 (o1 + on).

The maximum is attained when oy is closest to 1
2 (o1 + on).

Solution: Query o1 and on, followed by a binary search to find the value oy closest to 1
2 (o1 + on).

Alternatively: Find the maximum with ternary search. Need to be somewhat smart with queries to
stay within the limit.

Pitfall: Make sure to return distinct indices!

E: Extraterrestrial Exploration
Problem author: Wietze Koops

Problem: Given query access to a sorted list of integers o1, o2 . . . , on, determine x , y , z that
maximize √

|ox − oy | +
√

|oy − oz | +
√

|oz − ox |.

Observation 1: It is always optimal to include o1 and on. Thus we only need to find y that maximizes√
|o1 − oy | +

√
|oy − on| +

√
|on − o1|.

Observation 2: The function
√

|o1 − oy | +
√

|oy − on| is concave and symmetric around 1
2 (o1 + on).

The maximum is attained when oy is closest to 1
2 (o1 + on).

Solution: Query o1 and on, followed by a binary search to find the value oy closest to 1
2 (o1 + on).

Alternatively: Find the maximum with ternary search. Need to be somewhat smart with queries to
stay within the limit.

Pitfall: Make sure to return distinct indices!

E: Extraterrestrial Exploration
Problem author: Wietze Koops

Problem: Given query access to a sorted list of integers o1, o2 . . . , on, determine x , y , z that
maximize √

|ox − oy | +
√

|oy − oz | +
√

|oz − ox |.

Observation 1: It is always optimal to include o1 and on. Thus we only need to find y that maximizes√
|o1 − oy | +

√
|oy − on| +

√
|on − o1|.

Observation 2: The function
√

|o1 − oy | +
√

|oy − on| is concave and symmetric around 1
2 (o1 + on).

The maximum is attained when oy is closest to 1
2 (o1 + on).

Solution: Query o1 and on, followed by a binary search to find the value oy closest to 1
2 (o1 + on).

Alternatively: Find the maximum with ternary search. Need to be somewhat smart with queries to
stay within the limit.

Pitfall: Make sure to return distinct indices!

E: Extraterrestrial Exploration
Problem author: Wietze Koops

Problem: Given query access to a sorted list of integers o1, o2 . . . , on, determine x , y , z that
maximize √

|ox − oy | +
√

|oy − oz | +
√

|oz − ox |.

Observation 1: It is always optimal to include o1 and on. Thus we only need to find y that maximizes√
|o1 − oy | +

√
|oy − on| +

√
|on − o1|.

Observation 2: The function
√

|o1 − oy | +
√

|oy − on| is concave and symmetric around 1
2 (o1 + on).

The maximum is attained when oy is closest to 1
2 (o1 + on).

Solution: Query o1 and on, followed by a binary search to find the value oy closest to 1
2 (o1 + on).

Alternatively: Find the maximum with ternary search. Need to be somewhat smart with queries to
stay within the limit.

Pitfall: Make sure to return distinct indices!

E: Extraterrestrial Exploration
Problem author: Wietze Koops

Testing tool: There was an issue with the provided testing tool: solutions were compared by
computing √

|ox − oy | +
√

|oy − oz | +
√

|oz − ox |

as a floating-point number.

Fortunately: Judging does not use floating-point comparisons. Instead, check whether there is a
middle index that gives a value closer to 1

2 (o1 + on).
Doing this in the testing tool would have given away a large part of the solution.

Statistics: 159 submissions, 34 accepted, 33 unknown

E: Extraterrestrial Exploration
Problem author: Wietze Koops

Testing tool: There was an issue with the provided testing tool: solutions were compared by
computing √

|ox − oy | +
√

|oy − oz | +
√

|oz − ox |

as a floating-point number.

Fortunately: Judging does not use floating-point comparisons. Instead, check whether there is a
middle index that gives a value closer to 1

2 (o1 + on).

Doing this in the testing tool would have given away a large part of the solution.

Statistics: 159 submissions, 34 accepted, 33 unknown

E: Extraterrestrial Exploration
Problem author: Wietze Koops

Testing tool: There was an issue with the provided testing tool: solutions were compared by
computing √

|ox − oy | +
√

|oy − oz | +
√

|oz − ox |

as a floating-point number.

Fortunately: Judging does not use floating-point comparisons. Instead, check whether there is a
middle index that gives a value closer to 1

2 (o1 + on).
Doing this in the testing tool would have given away a large part of the solution.

Statistics: 159 submissions, 34 accepted, 33 unknown

E: Extraterrestrial Exploration
Problem author: Wietze Koops

Testing tool: There was an issue with the provided testing tool: solutions were compared by
computing √

|ox − oy | +
√

|oy − oz | +
√

|oz − ox |

as a floating-point number.

Fortunately: Judging does not use floating-point comparisons. Instead, check whether there is a
middle index that gives a value closer to 1

2 (o1 + on).
Doing this in the testing tool would have given away a large part of the solution.

Statistics: 159 submissions, 34 accepted, 33 unknown

I: Interrail Pass
Problem author: Ragnar Groot Koerkamp

Problem: Pay trips on n days ti ∈ {0, . . . , T}. The fare for the ith trip is fi . Instead of paying
the fare you can use a (multi-ride) pass. There are k types of pass, the jth has cost cj

and lasts for a period of pj days, during which it covers the first dj trips.

First step: Focus on the trip dates t1, . . . , tn (rather than {0, . . . , T}). Useful to understand the
process ‘backwards’: “if I pay the ith trip (on day ti) with the jth pass, then”
Can assume that today is the last travel day covered by the pass, either because period
pj ran out before ti+1 or because the pass ran out of days dj . E.g., for dj = 3:

•
ti′

•
1

•
2

ti

•
ti+1

pj

•
ti′

•
1

•
2

•
3

ti

•
ti+1

pj

The index of the first travel day not covered by jth pass is therefore the largest i ′ ≥ 1
such that i ′ ≤ i − dj or ti′ ≤ ti − pj .

I: Interrail Pass
Problem author: Ragnar Groot Koerkamp

Problem: Pay trips on n days ti ∈ {0, . . . , T}. The fare for the ith trip is fi . Instead of paying
the fare you can use a (multi-ride) pass. There are k types of pass, the jth has cost cj

and lasts for a period of pj days, during which it covers the first dj trips.
First step: Focus on the trip dates t1, . . . , tn (rather than {0, . . . , T}). Useful to understand the

process ‘backwards’: “if I pay the ith trip (on day ti) with the jth pass, then”

Can assume that today is the last travel day covered by the pass, either because period
pj ran out before ti+1 or because the pass ran out of days dj . E.g., for dj = 3:

•
ti′

•
1

•
2

ti

•
ti+1

pj

•
ti′

•
1

•
2

•
3

ti

•
ti+1

pj

The index of the first travel day not covered by jth pass is therefore the largest i ′ ≥ 1
such that i ′ ≤ i − dj or ti′ ≤ ti − pj .

I: Interrail Pass
Problem author: Ragnar Groot Koerkamp

Problem: Pay trips on n days ti ∈ {0, . . . , T}. The fare for the ith trip is fi . Instead of paying
the fare you can use a (multi-ride) pass. There are k types of pass, the jth has cost cj

and lasts for a period of pj days, during which it covers the first dj trips.
First step: Focus on the trip dates t1, . . . , tn (rather than {0, . . . , T}). Useful to understand the

process ‘backwards’: “if I pay the ith trip (on day ti) with the jth pass, then”
Can assume that today is the last travel day covered by the pass, either because period
pj ran out before ti+1 or because the pass ran out of days dj . E.g., for dj = 3:

•
ti′

•
1

•
2

ti

•
ti+1

pj

•
ti′

•
1

•
2

•
3

ti

•
ti+1

pj

The index of the first travel day not covered by jth pass is therefore the largest i ′ ≥ 1
such that i ′ ≤ i − dj or ti′ ≤ ti − pj .

I: Interrail Pass
Problem author: Ragnar Groot Koerkamp

Definition: For t ∈ {1, . . . , T}, let prev(t) be the index of latest trip before day t, formally

prev(t) = max{ i : ti ≤ t } .

This can be evaluated in time O(log n) by binary search in (t1, . . . , tn) or in constant
time with O(T) preprocessing by tabulating prev(t) for every t.

Recurrence: Let OPT(i) be the optimum cost for the first i trips. Then, for i > 0,

OPT(i) = min

fi + OPT(i − 1) , (pay regular fare)
min

1≤j≤k

{
cj + OPT(max(i − dj , prev(ti − pj)))

}
(jth pass expires today)

Solution: Implement using dynamic programming / memoization.
Running time: O(nk log n) or O(nk + T).

Statistics: 47 submissions, 20 accepted, 13 unknown

I: Interrail Pass
Problem author: Ragnar Groot Koerkamp

Definition: For t ∈ {1, . . . , T}, let prev(t) be the index of latest trip before day t, formally

prev(t) = max{ i : ti ≤ t } .

This can be evaluated in time O(log n) by binary search in (t1, . . . , tn) or in constant
time with O(T) preprocessing by tabulating prev(t) for every t.

Recurrence: Let OPT(i) be the optimum cost for the first i trips. Then, for i > 0,

OPT(i) = min

fi + OPT(i − 1) , (pay regular fare)
min

1≤j≤k

{
cj + OPT(max(i − dj , prev(ti − pj)))

}
(jth pass expires today)

Solution: Implement using dynamic programming / memoization.
Running time: O(nk log n) or O(nk + T).

Statistics: 47 submissions, 20 accepted, 13 unknown

I: Interrail Pass
Problem author: Ragnar Groot Koerkamp

Definition: For t ∈ {1, . . . , T}, let prev(t) be the index of latest trip before day t, formally

prev(t) = max{ i : ti ≤ t } .

This can be evaluated in time O(log n) by binary search in (t1, . . . , tn) or in constant
time with O(T) preprocessing by tabulating prev(t) for every t.

Recurrence: Let OPT(i) be the optimum cost for the first i trips. Then, for i > 0,

OPT(i) = min

fi + OPT(i − 1) , (pay regular fare)
min

1≤j≤k

{
cj + OPT(max(i − dj , prev(ti − pj)))

}
(jth pass expires today)

Solution: Implement using dynamic programming / memoization.

Running time: O(nk log n) or O(nk + T).

Statistics: 47 submissions, 20 accepted, 13 unknown

I: Interrail Pass
Problem author: Ragnar Groot Koerkamp

Definition: For t ∈ {1, . . . , T}, let prev(t) be the index of latest trip before day t, formally

prev(t) = max{ i : ti ≤ t } .

This can be evaluated in time O(log n) by binary search in (t1, . . . , tn) or in constant
time with O(T) preprocessing by tabulating prev(t) for every t.

Recurrence: Let OPT(i) be the optimum cost for the first i trips. Then, for i > 0,

OPT(i) = min

fi + OPT(i − 1) , (pay regular fare)
min

1≤j≤k

{
cj + OPT(max(i − dj , prev(ti − pj)))

}
(jth pass expires today)

Solution: Implement using dynamic programming / memoization.
Running time: O(nk log n) or O(nk + T).

Statistics: 47 submissions, 20 accepted, 13 unknown

I: Interrail Pass
Problem author: Ragnar Groot Koerkamp

Definition: For t ∈ {1, . . . , T}, let prev(t) be the index of latest trip before day t, formally

prev(t) = max{ i : ti ≤ t } .

This can be evaluated in time O(log n) by binary search in (t1, . . . , tn) or in constant
time with O(T) preprocessing by tabulating prev(t) for every t.

Recurrence: Let OPT(i) be the optimum cost for the first i trips. Then, for i > 0,

OPT(i) = min

fi + OPT(i − 1) , (pay regular fare)
min

1≤j≤k

{
cj + OPT(max(i − dj , prev(ti − pj)))

}
(jth pass expires today)

Solution: Implement using dynamic programming / memoization.
Running time: O(nk log n) or O(nk + T).

Statistics: 47 submissions, 20 accepted, 13 unknown

F: Failing Factory
Problem author: Reinier Schmiermann

Problem: Given is a graph of the dependencies between steps in a factory. Each step
independently fails with some probability pi . Find the maximum probability that a step
and all its dependencies do not fail.

Naive solution: For each step, multiply the success probabilities of all its dependencies, using DFS.
O(n2) is too slow!

Insight 1: Within a strongly connected component, all steps have the same failure probability.
Insight 2: We should look for a SCC without external dependencies. (So a sink in the collapsed

graph).
Solution: Use Tarjan’s or Kosaraju’s algorithm to find strongly connected components.
Solution: For each sink component, compute

∏
(1 − pi), and return the maximum.

Running time: O(n).
Pitfalls: Do not confuse min and max.
Pitfalls: Do not confuse p and 1 − p.
Pitfalls: Print output with sufficient precision (e.g. using setprecision(10)).

Statistics: 92 submissions, 19 accepted, 36 unknown

F: Failing Factory
Problem author: Reinier Schmiermann

Problem: Given is a graph of the dependencies between steps in a factory. Each step
independently fails with some probability pi . Find the maximum probability that a step
and all its dependencies do not fail.

Naive solution: For each step, multiply the success probabilities of all its dependencies, using DFS.
O(n2) is too slow!

Insight 1: Within a strongly connected component, all steps have the same failure probability.
Insight 2: We should look for a SCC without external dependencies. (So a sink in the collapsed

graph).
Solution: Use Tarjan’s or Kosaraju’s algorithm to find strongly connected components.
Solution: For each sink component, compute

∏
(1 − pi), and return the maximum.

Running time: O(n).
Pitfalls: Do not confuse min and max.
Pitfalls: Do not confuse p and 1 − p.
Pitfalls: Print output with sufficient precision (e.g. using setprecision(10)).

Statistics: 92 submissions, 19 accepted, 36 unknown

F: Failing Factory
Problem author: Reinier Schmiermann

Problem: Given is a graph of the dependencies between steps in a factory. Each step
independently fails with some probability pi . Find the maximum probability that a step
and all its dependencies do not fail.

Naive solution: For each step, multiply the success probabilities of all its dependencies, using DFS.
O(n2) is too slow!

Insight 1: Within a strongly connected component, all steps have the same failure probability.

Insight 2: We should look for a SCC without external dependencies. (So a sink in the collapsed
graph).

Solution: Use Tarjan’s or Kosaraju’s algorithm to find strongly connected components.
Solution: For each sink component, compute

∏
(1 − pi), and return the maximum.

Running time: O(n).
Pitfalls: Do not confuse min and max.
Pitfalls: Do not confuse p and 1 − p.
Pitfalls: Print output with sufficient precision (e.g. using setprecision(10)).

Statistics: 92 submissions, 19 accepted, 36 unknown

F: Failing Factory
Problem author: Reinier Schmiermann

Problem: Given is a graph of the dependencies between steps in a factory. Each step
independently fails with some probability pi . Find the maximum probability that a step
and all its dependencies do not fail.

Naive solution: For each step, multiply the success probabilities of all its dependencies, using DFS.
O(n2) is too slow!

Insight 1: Within a strongly connected component, all steps have the same failure probability.
Insight 2: We should look for a SCC without external dependencies. (So a sink in the collapsed

graph).

Solution: Use Tarjan’s or Kosaraju’s algorithm to find strongly connected components.
Solution: For each sink component, compute

∏
(1 − pi), and return the maximum.

Running time: O(n).
Pitfalls: Do not confuse min and max.
Pitfalls: Do not confuse p and 1 − p.
Pitfalls: Print output with sufficient precision (e.g. using setprecision(10)).

Statistics: 92 submissions, 19 accepted, 36 unknown

F: Failing Factory
Problem author: Reinier Schmiermann

Problem: Given is a graph of the dependencies between steps in a factory. Each step
independently fails with some probability pi . Find the maximum probability that a step
and all its dependencies do not fail.

Naive solution: For each step, multiply the success probabilities of all its dependencies, using DFS.
O(n2) is too slow!

Insight 1: Within a strongly connected component, all steps have the same failure probability.
Insight 2: We should look for a SCC without external dependencies. (So a sink in the collapsed

graph).
Solution: Use Tarjan’s or Kosaraju’s algorithm to find strongly connected components.

Solution: For each sink component, compute
∏

(1 − pi), and return the maximum.
Running time: O(n).

Pitfalls: Do not confuse min and max.
Pitfalls: Do not confuse p and 1 − p.
Pitfalls: Print output with sufficient precision (e.g. using setprecision(10)).

Statistics: 92 submissions, 19 accepted, 36 unknown

F: Failing Factory
Problem author: Reinier Schmiermann

Problem: Given is a graph of the dependencies between steps in a factory. Each step
independently fails with some probability pi . Find the maximum probability that a step
and all its dependencies do not fail.

Naive solution: For each step, multiply the success probabilities of all its dependencies, using DFS.
O(n2) is too slow!

Insight 1: Within a strongly connected component, all steps have the same failure probability.
Insight 2: We should look for a SCC without external dependencies. (So a sink in the collapsed

graph).
Solution: Use Tarjan’s or Kosaraju’s algorithm to find strongly connected components.
Solution: For each sink component, compute

∏
(1 − pi), and return the maximum.

Running time: O(n).
Pitfalls: Do not confuse min and max.
Pitfalls: Do not confuse p and 1 − p.
Pitfalls: Print output with sufficient precision (e.g. using setprecision(10)).

Statistics: 92 submissions, 19 accepted, 36 unknown

F: Failing Factory
Problem author: Reinier Schmiermann

Problem: Given is a graph of the dependencies between steps in a factory. Each step
independently fails with some probability pi . Find the maximum probability that a step
and all its dependencies do not fail.

Naive solution: For each step, multiply the success probabilities of all its dependencies, using DFS.
O(n2) is too slow!

Insight 1: Within a strongly connected component, all steps have the same failure probability.
Insight 2: We should look for a SCC without external dependencies. (So a sink in the collapsed

graph).
Solution: Use Tarjan’s or Kosaraju’s algorithm to find strongly connected components.
Solution: For each sink component, compute

∏
(1 − pi), and return the maximum.

Running time: O(n).

Pitfalls: Do not confuse min and max.
Pitfalls: Do not confuse p and 1 − p.
Pitfalls: Print output with sufficient precision (e.g. using setprecision(10)).

Statistics: 92 submissions, 19 accepted, 36 unknown

F: Failing Factory
Problem author: Reinier Schmiermann

Problem: Given is a graph of the dependencies between steps in a factory. Each step
independently fails with some probability pi . Find the maximum probability that a step
and all its dependencies do not fail.

Naive solution: For each step, multiply the success probabilities of all its dependencies, using DFS.
O(n2) is too slow!

Insight 1: Within a strongly connected component, all steps have the same failure probability.
Insight 2: We should look for a SCC without external dependencies. (So a sink in the collapsed

graph).
Solution: Use Tarjan’s or Kosaraju’s algorithm to find strongly connected components.
Solution: For each sink component, compute

∏
(1 − pi), and return the maximum.

Running time: O(n).
Pitfalls: Do not confuse min and max.

Pitfalls: Do not confuse p and 1 − p.
Pitfalls: Print output with sufficient precision (e.g. using setprecision(10)).

Statistics: 92 submissions, 19 accepted, 36 unknown

F: Failing Factory
Problem author: Reinier Schmiermann

Problem: Given is a graph of the dependencies between steps in a factory. Each step
independently fails with some probability pi . Find the maximum probability that a step
and all its dependencies do not fail.

Naive solution: For each step, multiply the success probabilities of all its dependencies, using DFS.
O(n2) is too slow!

Insight 1: Within a strongly connected component, all steps have the same failure probability.
Insight 2: We should look for a SCC without external dependencies. (So a sink in the collapsed

graph).
Solution: Use Tarjan’s or Kosaraju’s algorithm to find strongly connected components.
Solution: For each sink component, compute

∏
(1 − pi), and return the maximum.

Running time: O(n).
Pitfalls: Do not confuse min and max.
Pitfalls: Do not confuse p and 1 − p.

Pitfalls: Print output with sufficient precision (e.g. using setprecision(10)).

Statistics: 92 submissions, 19 accepted, 36 unknown

F: Failing Factory
Problem author: Reinier Schmiermann

Problem: Given is a graph of the dependencies between steps in a factory. Each step
independently fails with some probability pi . Find the maximum probability that a step
and all its dependencies do not fail.

Naive solution: For each step, multiply the success probabilities of all its dependencies, using DFS.
O(n2) is too slow!

Insight 1: Within a strongly connected component, all steps have the same failure probability.
Insight 2: We should look for a SCC without external dependencies. (So a sink in the collapsed

graph).
Solution: Use Tarjan’s or Kosaraju’s algorithm to find strongly connected components.
Solution: For each sink component, compute

∏
(1 − pi), and return the maximum.

Running time: O(n).
Pitfalls: Do not confuse min and max.
Pitfalls: Do not confuse p and 1 − p.
Pitfalls: Print output with sufficient precision (e.g. using setprecision(10)).

Statistics: 92 submissions, 19 accepted, 36 unknown

F: Failing Factory
Problem author: Reinier Schmiermann

Problem: Given is a graph of the dependencies between steps in a factory. Each step
independently fails with some probability pi . Find the maximum probability that a step
and all its dependencies do not fail.

Naive solution: For each step, multiply the success probabilities of all its dependencies, using DFS.
O(n2) is too slow!

Insight 1: Within a strongly connected component, all steps have the same failure probability.
Insight 2: We should look for a SCC without external dependencies. (So a sink in the collapsed

graph).
Solution: Use Tarjan’s or Kosaraju’s algorithm to find strongly connected components.
Solution: For each sink component, compute

∏
(1 − pi), and return the maximum.

Running time: O(n).
Pitfalls: Do not confuse min and max.
Pitfalls: Do not confuse p and 1 − p.
Pitfalls: Print output with sufficient precision (e.g. using setprecision(10)).

Statistics: 92 submissions, 19 accepted, 36 unknown

B: Buggy Blinkers
Problem author: Gijs Pennings

Problem: Find the shortest path in an unweighted graph, but you cannot make more than k
uninterrupted turns.

Observations: • An elementary BFS does not suffice, since you might exceed the turn limit.
• To determine when to activate the blinkers, you must keep track of the direction

of arrival and current blinker state.
Solution: Perform a (breadth-first) search on a higher-dimensional space, where each

“hypernode” is defined by

⟨intersection, arrival direction, #activations, blinker state⟩.

Prune the search if #activations > k.
Running time: With n · 4 · k · 3 hypernodes and each node having O(1) edges, BFS takes O(kn) time.

Dijkstra with running time O(kn log n) is accepted, but not necessary.

Statistics: 49 submissions, 9 accepted, 25 unknown

B: Buggy Blinkers
Problem author: Gijs Pennings

Problem: Find the shortest path in an unweighted graph, but you cannot make more than k
uninterrupted turns.

Observations: • An elementary BFS does not suffice, since you might exceed the turn limit.
• To determine when to activate the blinkers, you must keep track of the direction

of arrival and current blinker state.

Solution: Perform a (breadth-first) search on a higher-dimensional space, where each
“hypernode” is defined by

⟨intersection, arrival direction, #activations, blinker state⟩.

Prune the search if #activations > k.
Running time: With n · 4 · k · 3 hypernodes and each node having O(1) edges, BFS takes O(kn) time.

Dijkstra with running time O(kn log n) is accepted, but not necessary.

Statistics: 49 submissions, 9 accepted, 25 unknown

B: Buggy Blinkers
Problem author: Gijs Pennings

Problem: Find the shortest path in an unweighted graph, but you cannot make more than k
uninterrupted turns.

Observations: • An elementary BFS does not suffice, since you might exceed the turn limit.
• To determine when to activate the blinkers, you must keep track of the direction

of arrival and current blinker state.
Solution: Perform a (breadth-first) search on a higher-dimensional space, where each

“hypernode” is defined by

⟨intersection, arrival direction, #activations, blinker state⟩.

Prune the search if #activations > k.

Running time: With n · 4 · k · 3 hypernodes and each node having O(1) edges, BFS takes O(kn) time.
Dijkstra with running time O(kn log n) is accepted, but not necessary.

Statistics: 49 submissions, 9 accepted, 25 unknown

B: Buggy Blinkers
Problem author: Gijs Pennings

Problem: Find the shortest path in an unweighted graph, but you cannot make more than k
uninterrupted turns.

Observations: • An elementary BFS does not suffice, since you might exceed the turn limit.
• To determine when to activate the blinkers, you must keep track of the direction

of arrival and current blinker state.
Solution: Perform a (breadth-first) search on a higher-dimensional space, where each

“hypernode” is defined by

⟨intersection, arrival direction, #activations, blinker state⟩.

Prune the search if #activations > k.
Running time: With n · 4 · k · 3 hypernodes and each node having O(1) edges, BFS takes O(kn) time.

Dijkstra with running time O(kn log n) is accepted, but not necessary.

Statistics: 49 submissions, 9 accepted, 25 unknown

B: Buggy Blinkers
Problem author: Gijs Pennings

Problem: Find the shortest path in an unweighted graph, but you cannot make more than k
uninterrupted turns.

Observations: • An elementary BFS does not suffice, since you might exceed the turn limit.
• To determine when to activate the blinkers, you must keep track of the direction

of arrival and current blinker state.
Solution: Perform a (breadth-first) search on a higher-dimensional space, where each

“hypernode” is defined by

⟨intersection, arrival direction, #activations, blinker state⟩.

Prune the search if #activations > k.
Running time: With n · 4 · k · 3 hypernodes and each node having O(1) edges, BFS takes O(kn) time.

Dijkstra with running time O(kn log n) is accepted, but not necessary.

Statistics: 49 submissions, 9 accepted, 25 unknown

B: Buggy Blinkers
Problem author: Gijs Pennings

19 38 57 76

testcase rank

0.5s

1.0s

1.5s

2.0s

2.5s

3.0s

3.5s

4.0s

C
P

U
 ti

m
e

0.0s

4.5s

B: Buggy Blinkers
Problem author: Gijs Pennings

19 38 57 76

testcase rank

0.5s

1.0s

1.5s

2.0s

2.5s

3.0s

3.5s

4.0s

C
P

U
 ti

m
e

0.0s

4.5s

B: Buggy Blinkers
Problem author: Gijs Pennings

19 38 57 76

testcase rank

0.5s

1.0s

1.5s

2.0s

2.5s

3.0s

3.5s

4.0s

C
P

U
 ti

m
e

0.0s

4.5s

Only 0.032 seconds to spare!

K: Karaoke Compression
Problem author: Jorke de Vlas

Problem: Compress a string s by replacing all occurrences of a chosen substring by a single
character, minimizing the total length of the compressed string and the replaced
substring.

Naive solution: For every substring, count the non-overlapping occurrences in s. Running time: O(n4),
or O(n3) with KMP.

Actual solution: Use rolling hashes to quickly count the occurrences of every substring.
• Define H(cici+1 . . . cj) = cib0 + ci+1b1 + · · · cjbj−i mod M, where we identify

every character with an integer and b and M are fixed integers.
• Note that H(cici+1 . . . cj) = H(cici+1 . . . cj−1) + cjbj−i = c0 + H(c1 . . . cj) · b

mod M, using which we can compute all hashes in O(n2) time.
• Walk through the string, for every hash keeping track of its last occurrence and

the number of non-overlapping occurrences found so far. This is also O(n2).
Pitfall: Hash collisions. There are > 107 substrings, so if M has less than 14 digits you will get

collisions (birthday paradox).
Note: There are also solutions using DP, divide and conquer, suffix arrays, or the z-function.

Statistics: 88 submissions, 7 accepted, 43 unknown

K: Karaoke Compression
Problem author: Jorke de Vlas

Problem: Compress a string s by replacing all occurrences of a chosen substring by a single
character, minimizing the total length of the compressed string and the replaced
substring.

Naive solution: For every substring, count the non-overlapping occurrences in s. Running time: O(n4),
or O(n3) with KMP.

Actual solution: Use rolling hashes to quickly count the occurrences of every substring.
• Define H(cici+1 . . . cj) = cib0 + ci+1b1 + · · · cjbj−i mod M, where we identify

every character with an integer and b and M are fixed integers.
• Note that H(cici+1 . . . cj) = H(cici+1 . . . cj−1) + cjbj−i = c0 + H(c1 . . . cj) · b

mod M, using which we can compute all hashes in O(n2) time.
• Walk through the string, for every hash keeping track of its last occurrence and

the number of non-overlapping occurrences found so far. This is also O(n2).
Pitfall: Hash collisions. There are > 107 substrings, so if M has less than 14 digits you will get

collisions (birthday paradox).
Note: There are also solutions using DP, divide and conquer, suffix arrays, or the z-function.

Statistics: 88 submissions, 7 accepted, 43 unknown

K: Karaoke Compression
Problem author: Jorke de Vlas

Problem: Compress a string s by replacing all occurrences of a chosen substring by a single
character, minimizing the total length of the compressed string and the replaced
substring.

Naive solution: For every substring, count the non-overlapping occurrences in s. Running time: O(n4),
or O(n3) with KMP.

Actual solution: Use rolling hashes to quickly count the occurrences of every substring.
• Define H(cici+1 . . . cj) = cib0 + ci+1b1 + · · · cjbj−i mod M, where we identify

every character with an integer and b and M are fixed integers.
• Note that H(cici+1 . . . cj) = H(cici+1 . . . cj−1) + cjbj−i = c0 + H(c1 . . . cj) · b

mod M, using which we can compute all hashes in O(n2) time.
• Walk through the string, for every hash keeping track of its last occurrence and

the number of non-overlapping occurrences found so far. This is also O(n2).

Pitfall: Hash collisions. There are > 107 substrings, so if M has less than 14 digits you will get
collisions (birthday paradox).

Note: There are also solutions using DP, divide and conquer, suffix arrays, or the z-function.

Statistics: 88 submissions, 7 accepted, 43 unknown

K: Karaoke Compression
Problem author: Jorke de Vlas

Problem: Compress a string s by replacing all occurrences of a chosen substring by a single
character, minimizing the total length of the compressed string and the replaced
substring.

Naive solution: For every substring, count the non-overlapping occurrences in s. Running time: O(n4),
or O(n3) with KMP.

Actual solution: Use rolling hashes to quickly count the occurrences of every substring.
• Define H(cici+1 . . . cj) = cib0 + ci+1b1 + · · · cjbj−i mod M, where we identify

every character with an integer and b and M are fixed integers.
• Note that H(cici+1 . . . cj) = H(cici+1 . . . cj−1) + cjbj−i = c0 + H(c1 . . . cj) · b

mod M, using which we can compute all hashes in O(n2) time.
• Walk through the string, for every hash keeping track of its last occurrence and

the number of non-overlapping occurrences found so far. This is also O(n2).
Pitfall: Hash collisions. There are > 107 substrings, so if M has less than 14 digits you will get

collisions (birthday paradox).

Note: There are also solutions using DP, divide and conquer, suffix arrays, or the z-function.

Statistics: 88 submissions, 7 accepted, 43 unknown

K: Karaoke Compression
Problem author: Jorke de Vlas

Problem: Compress a string s by replacing all occurrences of a chosen substring by a single
character, minimizing the total length of the compressed string and the replaced
substring.

Naive solution: For every substring, count the non-overlapping occurrences in s. Running time: O(n4),
or O(n3) with KMP.

Actual solution: Use rolling hashes to quickly count the occurrences of every substring.
• Define H(cici+1 . . . cj) = cib0 + ci+1b1 + · · · cjbj−i mod M, where we identify

every character with an integer and b and M are fixed integers.
• Note that H(cici+1 . . . cj) = H(cici+1 . . . cj−1) + cjbj−i = c0 + H(c1 . . . cj) · b

mod M, using which we can compute all hashes in O(n2) time.
• Walk through the string, for every hash keeping track of its last occurrence and

the number of non-overlapping occurrences found so far. This is also O(n2).
Pitfall: Hash collisions. There are > 107 substrings, so if M has less than 14 digits you will get

collisions (birthday paradox).
Note: There are also solutions using DP, divide and conquer, suffix arrays, or the z-function.

Statistics: 88 submissions, 7 accepted, 43 unknown

K: Karaoke Compression
Problem author: Jorke de Vlas

Problem: Compress a string s by replacing all occurrences of a chosen substring by a single
character, minimizing the total length of the compressed string and the replaced
substring.

Naive solution: For every substring, count the non-overlapping occurrences in s. Running time: O(n4),
or O(n3) with KMP.

Actual solution: Use rolling hashes to quickly count the occurrences of every substring.
• Define H(cici+1 . . . cj) = cib0 + ci+1b1 + · · · cjbj−i mod M, where we identify

every character with an integer and b and M are fixed integers.
• Note that H(cici+1 . . . cj) = H(cici+1 . . . cj−1) + cjbj−i = c0 + H(c1 . . . cj) · b

mod M, using which we can compute all hashes in O(n2) time.
• Walk through the string, for every hash keeping track of its last occurrence and

the number of non-overlapping occurrences found so far. This is also O(n2).
Pitfall: Hash collisions. There are > 107 substrings, so if M has less than 14 digits you will get

collisions (birthday paradox).
Note: There are also solutions using DP, divide and conquer, suffix arrays, or the z-function.

Statistics: 88 submissions, 7 accepted, 43 unknown

M: Museum Visit
Problem author: Tobias Roehr

Problem: Given intervals and costs associated with each integer, find the minimum cost of a
subset of integers that hits all intervals.

Observation: If one interval is contained in another one, we can ignore the larger interval, as it will
always be hit when the smaller one is.

Solution: Dynamic programming! Let dp[i] be the minimum cost of a set that includes i and
hits all intervals ending before i .

Recurrence: dp[i] = cost[i] + minj∈[ki ,i) dp[j] with ki being the largest startpoint of an interval
ending before i . The answer is dp[n + 1].

Observation: we can find these ki by sorting the intervals.
Running time: O(n2), which is too slow.

Faster Solution: Use a segment tree to maintain the DP values.
Running time: O(n log n), which is fast enough!

Easier Solution: Use a heap to maintain the DP values.
Fastest Solution: Use a deque to maintain the pareto front of (i , dp[i]).

Running time: O(n) using bucket sort.

M: Museum Visit
Problem author: Tobias Roehr

Problem: Given intervals and costs associated with each integer, find the minimum cost of a
subset of integers that hits all intervals.

Observation: If one interval is contained in another one, we can ignore the larger interval, as it will
always be hit when the smaller one is.

Solution: Dynamic programming! Let dp[i] be the minimum cost of a set that includes i and
hits all intervals ending before i .

Recurrence: dp[i] = cost[i] + minj∈[ki ,i) dp[j] with ki being the largest startpoint of an interval
ending before i . The answer is dp[n + 1].

Observation: we can find these ki by sorting the intervals.
Running time: O(n2), which is too slow.

Faster Solution: Use a segment tree to maintain the DP values.
Running time: O(n log n), which is fast enough!

Easier Solution: Use a heap to maintain the DP values.
Fastest Solution: Use a deque to maintain the pareto front of (i , dp[i]).

Running time: O(n) using bucket sort.

M: Museum Visit
Problem author: Tobias Roehr

Problem: Given intervals and costs associated with each integer, find the minimum cost of a
subset of integers that hits all intervals.

Observation: If one interval is contained in another one, we can ignore the larger interval, as it will
always be hit when the smaller one is.

Solution: Dynamic programming! Let dp[i] be the minimum cost of a set that includes i and
hits all intervals ending before i .

Recurrence: dp[i] = cost[i] + minj∈[ki ,i) dp[j] with ki being the largest startpoint of an interval
ending before i . The answer is dp[n + 1].

Observation: we can find these ki by sorting the intervals.
Running time: O(n2), which is too slow.

Faster Solution: Use a segment tree to maintain the DP values.
Running time: O(n log n), which is fast enough!

Easier Solution: Use a heap to maintain the DP values.
Fastest Solution: Use a deque to maintain the pareto front of (i , dp[i]).

Running time: O(n) using bucket sort.

M: Museum Visit
Problem author: Tobias Roehr

Problem: Given intervals and costs associated with each integer, find the minimum cost of a
subset of integers that hits all intervals.

Observation: If one interval is contained in another one, we can ignore the larger interval, as it will
always be hit when the smaller one is.

Solution: Dynamic programming! Let dp[i] be the minimum cost of a set that includes i and
hits all intervals ending before i .

Recurrence: dp[i] = cost[i] + minj∈[ki ,i) dp[j] with ki being the largest startpoint of an interval
ending before i . The answer is dp[n + 1].

Observation: we can find these ki by sorting the intervals.
Running time: O(n2), which is too slow.

Faster Solution: Use a segment tree to maintain the DP values.
Running time: O(n log n), which is fast enough!

Easier Solution: Use a heap to maintain the DP values.
Fastest Solution: Use a deque to maintain the pareto front of (i , dp[i]).

Running time: O(n) using bucket sort.

M: Museum Visit
Problem author: Tobias Roehr

Problem: Given intervals and costs associated with each integer, find the minimum cost of a
subset of integers that hits all intervals.

Observation: If one interval is contained in another one, we can ignore the larger interval, as it will
always be hit when the smaller one is.

Solution: Dynamic programming! Let dp[i] be the minimum cost of a set that includes i and
hits all intervals ending before i .

Recurrence: dp[i] = cost[i] + minj∈[ki ,i) dp[j] with ki being the largest startpoint of an interval
ending before i . The answer is dp[n + 1].

Observation: we can find these ki by sorting the intervals.

Running time: O(n2), which is too slow.
Faster Solution: Use a segment tree to maintain the DP values.

Running time: O(n log n), which is fast enough!
Easier Solution: Use a heap to maintain the DP values.

Fastest Solution: Use a deque to maintain the pareto front of (i , dp[i]).
Running time: O(n) using bucket sort.

M: Museum Visit
Problem author: Tobias Roehr

Problem: Given intervals and costs associated with each integer, find the minimum cost of a
subset of integers that hits all intervals.

Observation: If one interval is contained in another one, we can ignore the larger interval, as it will
always be hit when the smaller one is.

Solution: Dynamic programming! Let dp[i] be the minimum cost of a set that includes i and
hits all intervals ending before i .

Recurrence: dp[i] = cost[i] + minj∈[ki ,i) dp[j] with ki being the largest startpoint of an interval
ending before i . The answer is dp[n + 1].

Observation: we can find these ki by sorting the intervals.
Running time: O(n2), which is too slow.

Faster Solution: Use a segment tree to maintain the DP values.
Running time: O(n log n), which is fast enough!

Easier Solution: Use a heap to maintain the DP values.
Fastest Solution: Use a deque to maintain the pareto front of (i , dp[i]).

Running time: O(n) using bucket sort.

M: Museum Visit
Problem author: Tobias Roehr

Problem: Given intervals and costs associated with each integer, find the minimum cost of a
subset of integers that hits all intervals.

Observation: If one interval is contained in another one, we can ignore the larger interval, as it will
always be hit when the smaller one is.

Solution: Dynamic programming! Let dp[i] be the minimum cost of a set that includes i and
hits all intervals ending before i .

Recurrence: dp[i] = cost[i] + minj∈[ki ,i) dp[j] with ki being the largest startpoint of an interval
ending before i . The answer is dp[n + 1].

Observation: we can find these ki by sorting the intervals.
Running time: O(n2), which is too slow.

Faster Solution: Use a segment tree to maintain the DP values.

Running time: O(n log n), which is fast enough!
Easier Solution: Use a heap to maintain the DP values.

Fastest Solution: Use a deque to maintain the pareto front of (i , dp[i]).
Running time: O(n) using bucket sort.

M: Museum Visit
Problem author: Tobias Roehr

Problem: Given intervals and costs associated with each integer, find the minimum cost of a
subset of integers that hits all intervals.

Observation: If one interval is contained in another one, we can ignore the larger interval, as it will
always be hit when the smaller one is.

Solution: Dynamic programming! Let dp[i] be the minimum cost of a set that includes i and
hits all intervals ending before i .

Recurrence: dp[i] = cost[i] + minj∈[ki ,i) dp[j] with ki being the largest startpoint of an interval
ending before i . The answer is dp[n + 1].

Observation: we can find these ki by sorting the intervals.
Running time: O(n2), which is too slow.

Faster Solution: Use a segment tree to maintain the DP values.
Running time: O(n log n), which is fast enough!

Easier Solution: Use a heap to maintain the DP values.
Fastest Solution: Use a deque to maintain the pareto front of (i , dp[i]).

Running time: O(n) using bucket sort.

M: Museum Visit
Problem author: Tobias Roehr

Problem: Given intervals and costs associated with each integer, find the minimum cost of a
subset of integers that hits all intervals.

Observation: If one interval is contained in another one, we can ignore the larger interval, as it will
always be hit when the smaller one is.

Solution: Dynamic programming! Let dp[i] be the minimum cost of a set that includes i and
hits all intervals ending before i .

Recurrence: dp[i] = cost[i] + minj∈[ki ,i) dp[j] with ki being the largest startpoint of an interval
ending before i . The answer is dp[n + 1].

Observation: we can find these ki by sorting the intervals.
Running time: O(n2), which is too slow.

Faster Solution: Use a segment tree to maintain the DP values.
Running time: O(n log n), which is fast enough!

Easier Solution: Use a heap to maintain the DP values.

Fastest Solution: Use a deque to maintain the pareto front of (i , dp[i]).
Running time: O(n) using bucket sort.

M: Museum Visit
Problem author: Tobias Roehr

Problem: Given intervals and costs associated with each integer, find the minimum cost of a
subset of integers that hits all intervals.

Observation: If one interval is contained in another one, we can ignore the larger interval, as it will
always be hit when the smaller one is.

Solution: Dynamic programming! Let dp[i] be the minimum cost of a set that includes i and
hits all intervals ending before i .

Recurrence: dp[i] = cost[i] + minj∈[ki ,i) dp[j] with ki being the largest startpoint of an interval
ending before i . The answer is dp[n + 1].

Observation: we can find these ki by sorting the intervals.
Running time: O(n2), which is too slow.

Faster Solution: Use a segment tree to maintain the DP values.
Running time: O(n log n), which is fast enough!

Easier Solution: Use a heap to maintain the DP values.
Fastest Solution: Use a deque to maintain the pareto front of (i , dp[i]).

Running time: O(n) using bucket sort.

M: Museum Visit
Problem author: Tobias Roehr

Problem: Given intervals and costs associated with each integer, find the minimum cost of a
subset of integers that hits all intervals.

Observation: If one interval is contained in another one, we can ignore the larger interval, as it will
always be hit when the smaller one is.

Solution: Dynamic programming! Let dp[i] be the minimum cost of a set that includes i and
hits all intervals ending before i .

Recurrence: dp[i] = cost[i] + minj∈[ki ,i) dp[j] with ki being the largest startpoint of an interval
ending before i . The answer is dp[n + 1].

Observation: we can find these ki by sorting the intervals.
Running time: O(n2), which is too slow.

Faster Solution: Use a segment tree to maintain the DP values.
Running time: O(n log n), which is fast enough!

Easier Solution: Use a heap to maintain the DP values.
Fastest Solution: Use a deque to maintain the pareto front of (i , dp[i]).

Running time: O(n) using bucket sort.

M: Museum Visit
Problem author: Tobias Roehr

Pitfall: Use sufficiently large integers.

Statistics: 26 submissions, 5 accepted, 14 unknown

M: Museum Visit
Problem author: Tobias Roehr

Pitfall: Use sufficiently large integers.

Statistics: 26 submissions, 5 accepted, 14 unknown

C: Concurrent Contests
Problem author: Reinier Schmiermann

Problem: Sort contestants into contests such that no-one wants to switch.

Solution: A greedy solution works:
1. Sort all contestants by their skill in descending order.
2. Put each contestant in the contest with the highest expected value for them.
3. When done, the resulting distribution of people is such an optimal distribution.

Proof sketch: Given a solution, if a person wants to switch, everyone with lower skill also wants to. If
someone wants to switch at the end, a contestant with higher skill would have picked a
different contest. They didn’t, so this must be optimal.

Pitfall: Floating point numbers: The expected value of joining a contest is given by
prize · skill

total skill in contest
Comparing these values naively will lead to floating point errors. Instead, use

a/b < c/d ⇔ a · d < c · b.

Running time: O(nm).
“Brute force”: Alternatively you could repeatedly move people to better spots if you were fast enough.

Statistics: 20 submissions, 4 accepted, 13 unknown

C: Concurrent Contests
Problem author: Reinier Schmiermann

Problem: Sort contestants into contests such that no-one wants to switch.
Solution: A greedy solution works:

1. Sort all contestants by their skill in descending order.
2. Put each contestant in the contest with the highest expected value for them.
3. When done, the resulting distribution of people is such an optimal distribution.

Proof sketch: Given a solution, if a person wants to switch, everyone with lower skill also wants to. If
someone wants to switch at the end, a contestant with higher skill would have picked a
different contest. They didn’t, so this must be optimal.

Pitfall: Floating point numbers: The expected value of joining a contest is given by
prize · skill

total skill in contest
Comparing these values naively will lead to floating point errors. Instead, use

a/b < c/d ⇔ a · d < c · b.

Running time: O(nm).
“Brute force”: Alternatively you could repeatedly move people to better spots if you were fast enough.

Statistics: 20 submissions, 4 accepted, 13 unknown

C: Concurrent Contests
Problem author: Reinier Schmiermann

Problem: Sort contestants into contests such that no-one wants to switch.
Solution: A greedy solution works:

1. Sort all contestants by their skill in descending order.
2. Put each contestant in the contest with the highest expected value for them.
3. When done, the resulting distribution of people is such an optimal distribution.

Proof sketch: Given a solution, if a person wants to switch, everyone with lower skill also wants to. If
someone wants to switch at the end, a contestant with higher skill would have picked a
different contest. They didn’t, so this must be optimal.

Pitfall: Floating point numbers: The expected value of joining a contest is given by
prize · skill

total skill in contest
Comparing these values naively will lead to floating point errors. Instead, use

a/b < c/d ⇔ a · d < c · b.

Running time: O(nm).
“Brute force”: Alternatively you could repeatedly move people to better spots if you were fast enough.

Statistics: 20 submissions, 4 accepted, 13 unknown

C: Concurrent Contests
Problem author: Reinier Schmiermann

Problem: Sort contestants into contests such that no-one wants to switch.
Solution: A greedy solution works:

1. Sort all contestants by their skill in descending order.
2. Put each contestant in the contest with the highest expected value for them.
3. When done, the resulting distribution of people is such an optimal distribution.

Proof sketch: Given a solution, if a person wants to switch, everyone with lower skill also wants to. If
someone wants to switch at the end, a contestant with higher skill would have picked a
different contest. They didn’t, so this must be optimal.

Pitfall: Floating point numbers: The expected value of joining a contest is given by
prize · skill

total skill in contest
Comparing these values naively will lead to floating point errors. Instead, use

a/b < c/d ⇔ a · d < c · b.

Running time: O(nm).
“Brute force”: Alternatively you could repeatedly move people to better spots if you were fast enough.

Statistics: 20 submissions, 4 accepted, 13 unknown

C: Concurrent Contests
Problem author: Reinier Schmiermann

Problem: Sort contestants into contests such that no-one wants to switch.
Solution: A greedy solution works:

1. Sort all contestants by their skill in descending order.
2. Put each contestant in the contest with the highest expected value for them.
3. When done, the resulting distribution of people is such an optimal distribution.

Proof sketch: Given a solution, if a person wants to switch, everyone with lower skill also wants to. If
someone wants to switch at the end, a contestant with higher skill would have picked a
different contest. They didn’t, so this must be optimal.

Pitfall: Floating point numbers: The expected value of joining a contest is given by
prize · skill

total skill in contest
Comparing these values naively will lead to floating point errors. Instead, use

a/b < c/d ⇔ a · d < c · b.

Running time: O(nm).

“Brute force”: Alternatively you could repeatedly move people to better spots if you were fast enough.

Statistics: 20 submissions, 4 accepted, 13 unknown

C: Concurrent Contests
Problem author: Reinier Schmiermann

Problem: Sort contestants into contests such that no-one wants to switch.
Solution: A greedy solution works:

1. Sort all contestants by their skill in descending order.
2. Put each contestant in the contest with the highest expected value for them.
3. When done, the resulting distribution of people is such an optimal distribution.

Proof sketch: Given a solution, if a person wants to switch, everyone with lower skill also wants to. If
someone wants to switch at the end, a contestant with higher skill would have picked a
different contest. They didn’t, so this must be optimal.

Pitfall: Floating point numbers: The expected value of joining a contest is given by
prize · skill

total skill in contest
Comparing these values naively will lead to floating point errors. Instead, use

a/b < c/d ⇔ a · d < c · b.

Running time: O(nm).
“Brute force”: Alternatively you could repeatedly move people to better spots if you were fast enough.

Statistics: 20 submissions, 4 accepted, 13 unknown

C: Concurrent Contests
Problem author: Reinier Schmiermann

Problem: Sort contestants into contests such that no-one wants to switch.
Solution: A greedy solution works:

1. Sort all contestants by their skill in descending order.
2. Put each contestant in the contest with the highest expected value for them.
3. When done, the resulting distribution of people is such an optimal distribution.

Proof sketch: Given a solution, if a person wants to switch, everyone with lower skill also wants to. If
someone wants to switch at the end, a contestant with higher skill would have picked a
different contest. They didn’t, so this must be optimal.

Pitfall: Floating point numbers: The expected value of joining a contest is given by
prize · skill

total skill in contest
Comparing these values naively will lead to floating point errors. Instead, use

a/b < c/d ⇔ a · d < c · b.

Running time: O(nm).
“Brute force”: Alternatively you could repeatedly move people to better spots if you were fast enough.

Statistics: 20 submissions, 4 accepted, 13 unknown

H: Horse Habitat
Problem author: Mike de Vries

Problem: Given a square grid with r rows and c columns, each square being either ‘.’ or ‘#’.
Determine for each 1 ≤ w ≤ c and 1 ≤ h ≤ r the number of w × h rectangles in the
grid with only ‘.’.

Observation: Going from top to bottom, we can determine for every square (i , j) the distance d(i , j)
to the first ‘#’ above it, assuming out of bounds is ‘#’. Then a w × h rectangle fits
somewhere if and only if the bottom row consists only of values that are at least h.

Solution: For each square (i , j) determine for each k ≥ j the smallest value v of d(i , t) for
t = j, . . . , k and report a (k − j + 1) × v rectangle. The number of w × h rectangles is
then the total number of reported w × v rectangles for v ≥ h.

Running time: For n = rc: O(rc2) = O(n√
n) after possibly transposing to make sure c ≤ r . Too

slow!

H: Horse Habitat
Problem author: Mike de Vries

Problem: Given a square grid with r rows and c columns, each square being either ‘.’ or ‘#’.
Determine for each 1 ≤ w ≤ c and 1 ≤ h ≤ r the number of w × h rectangles in the
grid with only ‘.’.

Observation: Going from top to bottom, we can determine for every square (i , j) the distance d(i , j)
to the first ‘#’ above it, assuming out of bounds is ‘#’. Then a w × h rectangle fits
somewhere if and only if the bottom row consists only of values that are at least h.

Solution: For each square (i , j) determine for each k ≥ j the smallest value v of d(i , t) for
t = j, . . . , k and report a (k − j + 1) × v rectangle. The number of w × h rectangles is
then the total number of reported w × v rectangles for v ≥ h.

Running time: For n = rc: O(rc2) = O(n√
n) after possibly transposing to make sure c ≤ r . Too

slow!

H: Horse Habitat
Problem author: Mike de Vries

Problem: Given a square grid with r rows and c columns, each square being either ‘.’ or ‘#’.
Determine for each 1 ≤ w ≤ c and 1 ≤ h ≤ r the number of w × h rectangles in the
grid with only ‘.’.

Observation: Going from top to bottom, we can determine for every square (i , j) the distance d(i , j)
to the first ‘#’ above it, assuming out of bounds is ‘#’. Then a w × h rectangle fits
somewhere if and only if the bottom row consists only of values that are at least h.

Solution: For each square (i , j) determine for each k ≥ j the smallest value v of d(i , t) for
t = j, . . . , k and report a (k − j + 1) × v rectangle. The number of w × h rectangles is
then the total number of reported w × v rectangles for v ≥ h.

Running time: For n = rc: O(rc2) = O(n√
n) after possibly transposing to make sure c ≤ r . Too

slow!

H: Horse Habitat
Problem author: Mike de Vries

Problem: Given a square grid with r rows and c columns, each square being either ‘.’ or ‘#’.
Determine for each 1 ≤ w ≤ c and 1 ≤ h ≤ r the number of w × h rectangles in the
grid with only ‘.’.

Observation: Going from top to bottom, we can determine for every square (i , j) the distance d(i , j)
to the first ‘#’ above it, assuming out of bounds is ‘#’. Then a w × h rectangle fits
somewhere if and only if the bottom row consists only of values that are at least h.

Solution: For each square (i , j) determine for each k ≥ j the smallest value v of d(i , t) for
t = j, . . . , k and report a (k − j + 1) × v rectangle. The number of w × h rectangles is
then the total number of reported w × v rectangles for v ≥ h.

Running time: For n = rc: O(rc2) = O(n√
n) after possibly transposing to make sure c ≤ r . Too

slow!

H: Horse Habitat
Problem author: Mike de Vries

New plan: For h from r down to 1, we can keep track of which squares (i , j) have d(i , j) ≥ h. We
can then determine the number of w × h rectangles for any w by counting the number
of intervals of length w in each row.

Task: In order to do this efficiently, we need to keep track of the total number of maximal
intervals of all possible lengths.

Solution: For each row we can keep track for each boundary of a maximal interval the other
boundary of that interval, or itself if the interval is of length one. For each new square
we can initialize a new interval of length one and then potentially merge with the
intervals on the left and right if they exist. Consider the test case below:

H: Horse Habitat
Problem author: Mike de Vries

New plan: For h from r down to 1, we can keep track of which squares (i , j) have d(i , j) ≥ h. We
can then determine the number of w × h rectangles for any w by counting the number
of intervals of length w in each row.

Task: In order to do this efficiently, we need to keep track of the total number of maximal
intervals of all possible lengths.

Solution: For each row we can keep track for each boundary of a maximal interval the other
boundary of that interval, or itself if the interval is of length one. For each new square
we can initialize a new interval of length one and then potentially merge with the
intervals on the left and right if they exist. Consider the test case below:

H: Horse Habitat
Problem author: Mike de Vries

New plan: For h from r down to 1, we can keep track of which squares (i , j) have d(i , j) ≥ h. We
can then determine the number of w × h rectangles for any w by counting the number
of intervals of length w in each row.

Task: In order to do this efficiently, we need to keep track of the total number of maximal
intervals of all possible lengths.

Solution: For each row we can keep track for each boundary of a maximal interval the other
boundary of that interval, or itself if the interval is of length one. For each new square
we can initialize a new interval of length one and then potentially merge with the
intervals on the left and right if they exist. Consider the test case below:

H: Horse Habitat
Problem author: Mike de Vries

New plan: For h from r down to 1, we can keep track of which squares (i , j) have d(i , j) ≥ h. We
can then determine the number of w × h rectangles for any w by counting the number
of intervals of length w in each row.

Task: In order to do this efficiently, we need to keep track of the total number of maximal
intervals of all possible lengths.

Solution: For each row we can keep track for each boundary of a maximal interval the other
boundary of that interval, or itself if the interval is of length one. For each new square
we can initialize a new interval of length one and then potentially merge with the
intervals on the left and right if they exist. Consider the test case below:

#..##
#..#.
#....

0 3 3 1 2 h = 3

H: Horse Habitat
Problem author: Mike de Vries

New plan: For h from r down to 1, we can keep track of which squares (i , j) have d(i , j) ≥ h. We
can then determine the number of w × h rectangles for any w by counting the number
of intervals of length w in each row.

Task: In order to do this efficiently, we need to keep track of the total number of maximal
intervals of all possible lengths.

Solution: For each row we can keep track for each boundary of a maximal interval the other
boundary of that interval, or itself if the interval is of length one. For each new square
we can initialize a new interval of length one and then potentially merge with the
intervals on the left and right if they exist. Consider the test case below:

#..##
#..#.
#....

0 3 3 1 2 h = 2

H: Horse Habitat
Problem author: Mike de Vries

New plan: For h from r down to 1, we can keep track of which squares (i , j) have d(i , j) ≥ h. We
can then determine the number of w × h rectangles for any w by counting the number
of intervals of length w in each row.

Task: In order to do this efficiently, we need to keep track of the total number of maximal
intervals of all possible lengths.

Solution: For each row we can keep track for each boundary of a maximal interval the other
boundary of that interval, or itself if the interval is of length one. For each new square
we can initialize a new interval of length one and then potentially merge with the
intervals on the left and right if they exist. Consider the test case below:

#..##
#..#.
#....

0 3 3 1 2 h = 1

H: Horse Habitat
Problem author: Mike de Vries

New plan: For h from r down to 1, we can keep track of which squares (i , j) have d(i , j) ≥ h. We
can then determine the number of w × h rectangles for any w by counting the number
of intervals of length w in each row.

Solved: We can keep track of the total number of maximal intervals of all possible lengths.

Calculation: After adding all squares with values of at least h, let Iw be the number of maximal
intervals of length w . The total number of w × h rectangles can then be calculated as
Rw = Iw + 2Iw+1 +

Finish: Introducing the value Cw = Iw + Iw+1 + . . . we get Cw = Iw + Cw+1 and
Rw = Cw + Rw+1. We can thus calculate Cw and Rw recursively for all h.

Running time: Linear time: O(rc)

Statistics: 29 submissions, 2 accepted, 21 unknown

H: Horse Habitat
Problem author: Mike de Vries

New plan: For h from r down to 1, we can keep track of which squares (i , j) have d(i , j) ≥ h. We
can then determine the number of w × h rectangles for any w by counting the number
of intervals of length w in each row.

Solved: We can keep track of the total number of maximal intervals of all possible lengths.
Calculation: After adding all squares with values of at least h, let Iw be the number of maximal

intervals of length w . The total number of w × h rectangles can then be calculated as
Rw = Iw + 2Iw+1 +

Finish: Introducing the value Cw = Iw + Iw+1 + . . . we get Cw = Iw + Cw+1 and
Rw = Cw + Rw+1. We can thus calculate Cw and Rw recursively for all h.

Running time: Linear time: O(rc)

Statistics: 29 submissions, 2 accepted, 21 unknown

H: Horse Habitat
Problem author: Mike de Vries

New plan: For h from r down to 1, we can keep track of which squares (i , j) have d(i , j) ≥ h. We
can then determine the number of w × h rectangles for any w by counting the number
of intervals of length w in each row.

Solved: We can keep track of the total number of maximal intervals of all possible lengths.
Calculation: After adding all squares with values of at least h, let Iw be the number of maximal

intervals of length w . The total number of w × h rectangles can then be calculated as
Rw = Iw + 2Iw+1 +

Finish: Introducing the value Cw = Iw + Iw+1 + . . . we get Cw = Iw + Cw+1 and
Rw = Cw + Rw+1. We can thus calculate Cw and Rw recursively for all h.

Running time: Linear time: O(rc)

Statistics: 29 submissions, 2 accepted, 21 unknown

H: Horse Habitat
Problem author: Mike de Vries

New plan: For h from r down to 1, we can keep track of which squares (i , j) have d(i , j) ≥ h. We
can then determine the number of w × h rectangles for any w by counting the number
of intervals of length w in each row.

Solved: We can keep track of the total number of maximal intervals of all possible lengths.
Calculation: After adding all squares with values of at least h, let Iw be the number of maximal

intervals of length w . The total number of w × h rectangles can then be calculated as
Rw = Iw + 2Iw+1 +

Finish: Introducing the value Cw = Iw + Iw+1 + . . . we get Cw = Iw + Cw+1 and
Rw = Cw + Rw+1. We can thus calculate Cw and Rw recursively for all h.

Running time: Linear time: O(rc)

Statistics: 29 submissions, 2 accepted, 21 unknown

H: Horse Habitat
Problem author: Mike de Vries

New plan: For h from r down to 1, we can keep track of which squares (i , j) have d(i , j) ≥ h. We
can then determine the number of w × h rectangles for any w by counting the number
of intervals of length w in each row.

Solved: We can keep track of the total number of maximal intervals of all possible lengths.
Calculation: After adding all squares with values of at least h, let Iw be the number of maximal

intervals of length w . The total number of w × h rectangles can then be calculated as
Rw = Iw + 2Iw+1 +

Finish: Introducing the value Cw = Iw + Iw+1 + . . . we get Cw = Iw + Cw+1 and
Rw = Cw + Rw+1. We can thus calculate Cw and Rw recursively for all h.

Running time: Linear time: O(rc)

Statistics: 29 submissions, 2 accepted, 21 unknown

D: Disgruntled Diner
Problem author: Wietze Koops

Problem: Given a table number t and menu item m, determine which pinned-up tickets must be
flipped to prove the following claim:

∀ pinned-up tickets “Ld” : (d = t) → (L = m).

Observation: The claim is false if and only if

∃ pinned-up ticket “Ld” : (d = t) ∧ (L ̸= m).

Let’s call such tickets illegal.

D: Disgruntled Diner
Problem author: Wietze Koops

Problem: Given a table number t and menu item m, determine which pinned-up tickets must be
flipped to prove the following claim:

∀ pinned-up tickets “Ld” : (d = t) → (L = m).

Observation: The claim is false if and only if

∃ pinned-up ticket “Ld” : (d = t) ∧ (L ̸= m).

Let’s call such tickets illegal.

D: Disgruntled Diner
Problem author: Wietze Koops

Claim: ∀ pinned-up tickets “Ld” : (d = t) → (L = m).
Definition: A ticket “Ld” is illegal if (d = t) ∧ (L ̸= m).

Solution: 1. Partition the computer tickets into sets of legal and illegal tickets. If there are no
illegal tickets, we can immediately return “true”.

2. Compute a bipartite matching between the legal tickets and the pinboard. If this
is impossible, the claim is guaranteed to be “false”.

3. Now, a matching exists, but any legal ticket on the board could be replaced by an
illegal one if the upright side is the same. So, a ticket “x” must be flipped if:

• x = t, or
• there exists an illegal ticket with menu item x .

Running time: Only step 2 is costly. An O(n3) flow-based algorithm suffices.

Statistics: 3 submissions, 0 accepted, 3 unknown

D: Disgruntled Diner
Problem author: Wietze Koops

Claim: ∀ pinned-up tickets “Ld” : (d = t) → (L = m).
Definition: A ticket “Ld” is illegal if (d = t) ∧ (L ̸= m).

Solution: 1. Partition the computer tickets into sets of legal and illegal tickets. If there are no
illegal tickets, we can immediately return “true”.

2. Compute a bipartite matching between the legal tickets and the pinboard. If this
is impossible, the claim is guaranteed to be “false”.

3. Now, a matching exists, but any legal ticket on the board could be replaced by an
illegal one if the upright side is the same. So, a ticket “x” must be flipped if:

• x = t, or
• there exists an illegal ticket with menu item x .

Running time: Only step 2 is costly. An O(n3) flow-based algorithm suffices.

Statistics: 3 submissions, 0 accepted, 3 unknown

D: Disgruntled Diner
Problem author: Wietze Koops

Claim: ∀ pinned-up tickets “Ld” : (d = t) → (L = m).
Definition: A ticket “Ld” is illegal if (d = t) ∧ (L ̸= m).

Solution: 1. Partition the computer tickets into sets of legal and illegal tickets. If there are no
illegal tickets, we can immediately return “true”.

2. Compute a bipartite matching between the legal tickets and the pinboard. If this
is impossible, the claim is guaranteed to be “false”.

3. Now, a matching exists, but any legal ticket on the board could be replaced by an
illegal one if the upright side is the same. So, a ticket “x” must be flipped if:

• x = t, or
• there exists an illegal ticket with menu item x .

Running time: Only step 2 is costly. An O(n3) flow-based algorithm suffices.

Statistics: 3 submissions, 0 accepted, 3 unknown

D: Disgruntled Diner
Problem author: Wietze Koops

Claim: ∀ pinned-up tickets “Ld” : (d = t) → (L = m).
Definition: A ticket “Ld” is illegal if (d = t) ∧ (L ̸= m).

Solution: 1. Partition the computer tickets into sets of legal and illegal tickets. If there are no
illegal tickets, we can immediately return “true”.

2. Compute a bipartite matching between the legal tickets and the pinboard. If this
is impossible, the claim is guaranteed to be “false”.

3. Now, a matching exists, but any legal ticket on the board could be replaced by an
illegal one if the upright side is the same. So, a ticket “x” must be flipped if:

• x = t, or
• there exists an illegal ticket with menu item x .

Running time: Only step 2 is costly. An O(n3) flow-based algorithm suffices.

Statistics: 3 submissions, 0 accepted, 3 unknown

L: Levelling Locks
Problem author: Ragnar Groot Koerkamp

Problem: Given n integers with average A, pick an element and
repeatedly add an element left or right such that the average
of the chosen range is always ≤ A.

Simplification: Consider the procedure in reverse.
Problem: Given n integers with average A, repeatedly delete an

element left or right such that the average is always ≤ A.
Simplification: Subtract A from each element.

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Definition: A valid prefix is a prefix such that when deleted one by one,
the sum in the remaining array is always ≤ 0.

Insight: Deleting the shortest valid non-negative prefix or suffix
“never hurts”, i.e., is optimal.

Intuition: After taking a prefix with positive sum, we can take every
suffix we could have taken before.

Solution: Repeatedly delete the shortest valid non-negative prefix until
none remain, then do the same with suffixes, alternating
between them. If no such prefix or suffix exists at some
point, the answer is “impossible”.

Complexity: O(n).
Pitfall: Floating point imprecision. Use integers or resort to fractions.

+2

−3

+4

−4

+2

−1

Statistics: 54 submissions, 0 accepted, 31 unknown

L: Levelling Locks
Problem author: Ragnar Groot Koerkamp

Problem: Given n integers with average A, pick an element and
repeatedly add an element left or right such that the average
of the chosen range is always ≤ A.

Simplification: Consider the procedure in reverse.
Problem: Given n integers with average A, repeatedly delete an

element left or right such that the average is always ≤ A.
Simplification: Subtract A from each element.

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Definition: A valid prefix is a prefix such that when deleted one by one,
the sum in the remaining array is always ≤ 0.

Insight: Deleting the shortest valid non-negative prefix or suffix
“never hurts”, i.e., is optimal.

Intuition: After taking a prefix with positive sum, we can take every
suffix we could have taken before.

Solution: Repeatedly delete the shortest valid non-negative prefix until
none remain, then do the same with suffixes, alternating
between them. If no such prefix or suffix exists at some
point, the answer is “impossible”.

Complexity: O(n).
Pitfall: Floating point imprecision. Use integers or resort to fractions.

+2

−3

+4

−4

+2

−1

Statistics: 54 submissions, 0 accepted, 31 unknown

L: Levelling Locks
Problem author: Ragnar Groot Koerkamp

Problem: Given n integers with average A, pick an element and
repeatedly add an element left or right such that the average
of the chosen range is always ≤ A.

Simplification: Consider the procedure in reverse.
Problem: Given n integers with average A, repeatedly delete an

element left or right such that the average is always ≤ A.
Simplification: Subtract A from each element.

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Definition: A valid prefix is a prefix such that when deleted one by one,
the sum in the remaining array is always ≤ 0.

Insight: Deleting the shortest valid non-negative prefix or suffix
“never hurts”, i.e., is optimal.

Intuition: After taking a prefix with positive sum, we can take every
suffix we could have taken before.

Solution: Repeatedly delete the shortest valid non-negative prefix until
none remain, then do the same with suffixes, alternating
between them. If no such prefix or suffix exists at some
point, the answer is “impossible”.

Complexity: O(n).
Pitfall: Floating point imprecision. Use integers or resort to fractions.

+2

−3

+4

−4

+2

−1

Statistics: 54 submissions, 0 accepted, 31 unknown

L: Levelling Locks
Problem author: Ragnar Groot Koerkamp

Problem: Given n integers with average A, pick an element and
repeatedly add an element left or right such that the average
of the chosen range is always ≤ A.

Simplification: Consider the procedure in reverse.
Problem: Given n integers with average A, repeatedly delete an

element left or right such that the average is always ≤ A.
Simplification: Subtract A from each element.

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Definition: A valid prefix is a prefix such that when deleted one by one,
the sum in the remaining array is always ≤ 0.

Insight: Deleting the shortest valid non-negative prefix or suffix
“never hurts”, i.e., is optimal.

Intuition: After taking a prefix with positive sum, we can take every
suffix we could have taken before.

Solution: Repeatedly delete the shortest valid non-negative prefix until
none remain, then do the same with suffixes, alternating
between them. If no such prefix or suffix exists at some
point, the answer is “impossible”.

Complexity: O(n).
Pitfall: Floating point imprecision. Use integers or resort to fractions.

+2

−3

+4

−4

+2

−1

Statistics: 54 submissions, 0 accepted, 31 unknown

L: Levelling Locks
Problem author: Ragnar Groot Koerkamp

Problem: Given n integers with average A, pick an element and
repeatedly add an element left or right such that the average
of the chosen range is always ≤ A.

Simplification: Consider the procedure in reverse.
Problem: Given n integers with average A, repeatedly delete an

element left or right such that the average is always ≤ A.
Simplification: Subtract A from each element.

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Definition: A valid prefix is a prefix such that when deleted one by one,
the sum in the remaining array is always ≤ 0.

Insight: Deleting the shortest valid non-negative prefix or suffix
“never hurts”, i.e., is optimal.

Intuition: After taking a prefix with positive sum, we can take every
suffix we could have taken before.

Solution: Repeatedly delete the shortest valid non-negative prefix until
none remain, then do the same with suffixes, alternating
between them. If no such prefix or suffix exists at some
point, the answer is “impossible”.

Complexity: O(n).
Pitfall: Floating point imprecision. Use integers or resort to fractions.

+2

−3

+4

−4

+2

−1

Statistics: 54 submissions, 0 accepted, 31 unknown

L: Levelling Locks
Problem author: Ragnar Groot Koerkamp

Problem: Given n integers with average A, pick an element and
repeatedly add an element left or right such that the average
of the chosen range is always ≤ A.

Simplification: Consider the procedure in reverse.
Problem: Given n integers with average A, repeatedly delete an

element left or right such that the average is always ≤ A.
Simplification: Subtract A from each element.

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Definition: A valid prefix is a prefix such that when deleted one by one,
the sum in the remaining array is always ≤ 0.

Insight: Deleting the shortest valid non-negative prefix or suffix
“never hurts”, i.e., is optimal.

Intuition: After taking a prefix with positive sum, we can take every
suffix we could have taken before.

Solution: Repeatedly delete the shortest valid non-negative prefix until
none remain, then do the same with suffixes, alternating
between them. If no such prefix or suffix exists at some
point, the answer is “impossible”.

Complexity: O(n).
Pitfall: Floating point imprecision. Use integers or resort to fractions.

+2

−3

+4

−4

+2

−1

Statistics: 54 submissions, 0 accepted, 31 unknown

L: Levelling Locks
Problem author: Ragnar Groot Koerkamp

Problem: Given n integers with average A, pick an element and
repeatedly add an element left or right such that the average
of the chosen range is always ≤ A.

Simplification: Consider the procedure in reverse.
Problem: Given n integers with average A, repeatedly delete an

element left or right such that the average is always ≤ A.
Simplification: Subtract A from each element.

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Definition: A valid prefix is a prefix such that when deleted one by one,
the sum in the remaining array is always ≤ 0.

Insight: Deleting the shortest valid non-negative prefix or suffix
“never hurts”, i.e., is optimal.

Intuition: After taking a prefix with positive sum, we can take every
suffix we could have taken before.

Solution: Repeatedly delete the shortest valid non-negative prefix until
none remain, then do the same with suffixes, alternating
between them. If no such prefix or suffix exists at some
point, the answer is “impossible”.

Complexity: O(n).
Pitfall: Floating point imprecision. Use integers or resort to fractions.

+2

−3

+4

−4

+2

−1

Statistics: 54 submissions, 0 accepted, 31 unknown

L: Levelling Locks
Problem author: Ragnar Groot Koerkamp

Problem: Given n integers with average A, pick an element and
repeatedly add an element left or right such that the average
of the chosen range is always ≤ A.

Simplification: Consider the procedure in reverse.

Problem: Given n integers with average A, repeatedly delete an
element left or right such that the average is always ≤ A.

Simplification: Subtract A from each element.
Problem: Given n integers, repeatedly delete elements left or right such

that the sum is always ≤ 0.

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Definition: A valid prefix is a prefix such that when deleted one by one,
the sum in the remaining array is always ≤ 0.

Insight: Deleting the shortest valid non-negative prefix or suffix
“never hurts”, i.e., is optimal.

Intuition: After taking a prefix with positive sum, we can take every
suffix we could have taken before.

Solution: Repeatedly delete the shortest valid non-negative prefix until
none remain, then do the same with suffixes, alternating
between them. If no such prefix or suffix exists at some
point, the answer is “impossible”.

Complexity: O(n).
Pitfall: Floating point imprecision. Use integers or resort to fractions.

+2

−3

+4

−4

+2

−1

Statistics: 54 submissions, 0 accepted, 31 unknown

L: Levelling Locks
Problem author: Ragnar Groot Koerkamp

Problem: Given n integers with average A, pick an element and
repeatedly add an element left or right such that the average
of the chosen range is always ≤ A.

Simplification: Consider the procedure in reverse.

Problem: Given n integers with average A, repeatedly delete an
element left or right such that the average is always ≤ A.

Simplification: Subtract A from each element.
Problem: Given n integers, repeatedly delete elements left or right such

that the sum is always ≤ 0.

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Definition: A valid prefix is a prefix such that when deleted one by one,
the sum in the remaining array is always ≤ 0.

Insight: Deleting the shortest valid non-negative prefix or suffix
“never hurts”, i.e., is optimal.

Intuition: After taking a prefix with positive sum, we can take every
suffix we could have taken before.

Solution: Repeatedly delete the shortest valid non-negative prefix until
none remain, then do the same with suffixes, alternating
between them. If no such prefix or suffix exists at some
point, the answer is “impossible”.

Complexity: O(n).
Pitfall: Floating point imprecision. Use integers or resort to fractions.

+2

−3

+4

−4

+2

−1

Statistics: 54 submissions, 0 accepted, 31 unknown

L: Levelling Locks
Problem author: Ragnar Groot Koerkamp

Problem: Given n integers with average A, pick an element and
repeatedly add an element left or right such that the average
of the chosen range is always ≤ A.

Simplification: Consider the procedure in reverse.
Problem: Given n integers with average A, repeatedly delete an

element left or right such that the average is always ≤ A.

Simplification: Subtract A from each element.
Problem: Given n integers, repeatedly delete elements left or right such

that the sum is always ≤ 0.

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Definition: A valid prefix is a prefix such that when deleted one by one,
the sum in the remaining array is always ≤ 0.

Insight: Deleting the shortest valid non-negative prefix or suffix
“never hurts”, i.e., is optimal.

Intuition: After taking a prefix with positive sum, we can take every
suffix we could have taken before.

Solution: Repeatedly delete the shortest valid non-negative prefix until
none remain, then do the same with suffixes, alternating
between them. If no such prefix or suffix exists at some
point, the answer is “impossible”.

Complexity: O(n).
Pitfall: Floating point imprecision. Use integers or resort to fractions.

+2

−3

+4

−4

+2

−1

Statistics: 54 submissions, 0 accepted, 31 unknown

L: Levelling Locks
Problem author: Ragnar Groot Koerkamp

Problem: Given n integers with average A, pick an element and
repeatedly add an element left or right such that the average
of the chosen range is always ≤ A.

Simplification: Consider the procedure in reverse.
Problem: Given n integers with average A, repeatedly delete an

element left or right such that the average is always ≤ A.

Simplification: Subtract A from each element.
Problem: Given n integers, repeatedly delete elements left or right such

that the sum is always ≤ 0.

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Definition: A valid prefix is a prefix such that when deleted one by one,
the sum in the remaining array is always ≤ 0.

Insight: Deleting the shortest valid non-negative prefix or suffix
“never hurts”, i.e., is optimal.

Intuition: After taking a prefix with positive sum, we can take every
suffix we could have taken before.

Solution: Repeatedly delete the shortest valid non-negative prefix until
none remain, then do the same with suffixes, alternating
between them. If no such prefix or suffix exists at some
point, the answer is “impossible”.

Complexity: O(n).
Pitfall: Floating point imprecision. Use integers or resort to fractions.

+2

−3

+4

−4

+2

−1

Statistics: 54 submissions, 0 accepted, 31 unknown

L: Levelling Locks
Problem author: Ragnar Groot Koerkamp

Problem: Given n integers with average A, pick an element and
repeatedly add an element left or right such that the average
of the chosen range is always ≤ A.

Simplification: Consider the procedure in reverse.
Problem: Given n integers with average A, repeatedly delete an

element left or right such that the average is always ≤ A.

Simplification: Subtract A from each element.
Problem: Given n integers, repeatedly delete elements left or right such

that the sum is always ≤ 0.

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Definition: A valid prefix is a prefix such that when deleted one by one,
the sum in the remaining array is always ≤ 0.

Insight: Deleting the shortest valid non-negative prefix or suffix
“never hurts”, i.e., is optimal.

Intuition: After taking a prefix with positive sum, we can take every
suffix we could have taken before.

Solution: Repeatedly delete the shortest valid non-negative prefix until
none remain, then do the same with suffixes, alternating
between them. If no such prefix or suffix exists at some
point, the answer is “impossible”.

Complexity: O(n).
Pitfall: Floating point imprecision. Use integers or resort to fractions.

+2

−3

+4

−4

+2

−1

Statistics: 54 submissions, 0 accepted, 31 unknown

L: Levelling Locks
Problem author: Ragnar Groot Koerkamp

Problem: Given n integers with average A, pick an element and
repeatedly add an element left or right such that the average
of the chosen range is always ≤ A.

Simplification: Consider the procedure in reverse.
Problem: Given n integers with average A, repeatedly delete an

element left or right such that the average is always ≤ A.

Simplification: Subtract A from each element.
Problem: Given n integers, repeatedly delete elements left or right such

that the sum is always ≤ 0.

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Definition: A valid prefix is a prefix such that when deleted one by one,
the sum in the remaining array is always ≤ 0.

Insight: Deleting the shortest valid non-negative prefix or suffix
“never hurts”, i.e., is optimal.

Intuition: After taking a prefix with positive sum, we can take every
suffix we could have taken before.

Solution: Repeatedly delete the shortest valid non-negative prefix until
none remain, then do the same with suffixes, alternating
between them. If no such prefix or suffix exists at some
point, the answer is “impossible”.

Complexity: O(n).
Pitfall: Floating point imprecision. Use integers or resort to fractions.

+2

−3

+4

−4

+2

−1

Statistics: 54 submissions, 0 accepted, 31 unknown

L: Levelling Locks
Problem author: Ragnar Groot Koerkamp

Problem: Given n integers with average A, pick an element and
repeatedly add an element left or right such that the average
of the chosen range is always ≤ A.

Simplification: Consider the procedure in reverse.
Problem: Given n integers with average A, repeatedly delete an

element left or right such that the average is always ≤ A.

Simplification: Subtract A from each element.
Problem: Given n integers, repeatedly delete elements left or right such

that the sum is always ≤ 0.

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Definition: A valid prefix is a prefix such that when deleted one by one,
the sum in the remaining array is always ≤ 0.

Insight: Deleting the shortest valid non-negative prefix or suffix
“never hurts”, i.e., is optimal.

Intuition: After taking a prefix with positive sum, we can take every
suffix we could have taken before.

Solution: Repeatedly delete the shortest valid non-negative prefix until
none remain, then do the same with suffixes, alternating
between them. If no such prefix or suffix exists at some
point, the answer is “impossible”.

Complexity: O(n).
Pitfall: Floating point imprecision. Use integers or resort to fractions.

+2

−3

+4

−4

+2

−1

Statistics: 54 submissions, 0 accepted, 31 unknown

L: Levelling Locks
Problem author: Ragnar Groot Koerkamp

Problem: Given n integers with average A, pick an element and
repeatedly add an element left or right such that the average
of the chosen range is always ≤ A.

Simplification: Consider the procedure in reverse.
Problem: Given n integers with average A, repeatedly delete an

element left or right such that the average is always ≤ A.

Simplification: Subtract A from each element.
Problem: Given n integers, repeatedly delete elements left or right such

that the sum is always ≤ 0.

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Definition: A valid prefix is a prefix such that when deleted one by one,
the sum in the remaining array is always ≤ 0.

Insight: Deleting the shortest valid non-negative prefix or suffix
“never hurts”, i.e., is optimal.

Intuition: After taking a prefix with positive sum, we can take every
suffix we could have taken before.

Solution: Repeatedly delete the shortest valid non-negative prefix until
none remain, then do the same with suffixes, alternating
between them. If no such prefix or suffix exists at some
point, the answer is “impossible”.

Complexity: O(n).
Pitfall: Floating point imprecision. Use integers or resort to fractions.

+2

−3

+4

−4

+2

−1

Statistics: 54 submissions, 0 accepted, 31 unknown

L: Levelling Locks
Problem author: Ragnar Groot Koerkamp

Problem: Given n integers with average A, pick an element and
repeatedly add an element left or right such that the average
of the chosen range is always ≤ A.

Simplification: Consider the procedure in reverse.
Problem: Given n integers with average A, repeatedly delete an

element left or right such that the average is always ≤ A.

Simplification: Subtract A from each element.
Problem: Given n integers, repeatedly delete elements left or right such

that the sum is always ≤ 0.

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Definition: A valid prefix is a prefix such that when deleted one by one,
the sum in the remaining array is always ≤ 0.

Insight: Deleting the shortest valid non-negative prefix or suffix
“never hurts”, i.e., is optimal.

Intuition: After taking a prefix with positive sum, we can take every
suffix we could have taken before.

Solution: Repeatedly delete the shortest valid non-negative prefix until
none remain, then do the same with suffixes, alternating
between them. If no such prefix or suffix exists at some
point, the answer is “impossible”.

Complexity: O(n).
Pitfall: Floating point imprecision. Use integers or resort to fractions.

+2

−3

+4

−4

+2

−1

Statistics: 54 submissions, 0 accepted, 31 unknown

L: Levelling Locks
Problem author: Ragnar Groot Koerkamp

Problem: Given n integers with average A, pick an element and
repeatedly add an element left or right such that the average
of the chosen range is always ≤ A.

Simplification: Consider the procedure in reverse.
Problem: Given n integers with average A, repeatedly delete an

element left or right such that the average is always ≤ A.

Simplification: Subtract A from each element.
Problem: Given n integers, repeatedly delete elements left or right such

that the sum is always ≤ 0.

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Definition: A valid prefix is a prefix such that when deleted one by one,
the sum in the remaining array is always ≤ 0.

Insight: Deleting the shortest valid non-negative prefix or suffix
“never hurts”, i.e., is optimal.

Intuition: After taking a prefix with positive sum, we can take every
suffix we could have taken before.

Solution: Repeatedly delete the shortest valid non-negative prefix until
none remain, then do the same with suffixes, alternating
between them. If no such prefix or suffix exists at some
point, the answer is “impossible”.

Complexity: O(n).
Pitfall: Floating point imprecision. Use integers or resort to fractions.

+2

−3

+4

−4

+2

−1

Statistics: 54 submissions, 0 accepted, 31 unknown

L: Levelling Locks
Problem author: Ragnar Groot Koerkamp

Problem: Given n integers with average A, pick an element and
repeatedly add an element left or right such that the average
of the chosen range is always ≤ A.

Simplification: Consider the procedure in reverse.
Problem: Given n integers with average A, repeatedly delete an

element left or right such that the average is always ≤ A.
Simplification: Subtract A from each element.

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Definition: A valid prefix is a prefix such that when deleted one by one,
the sum in the remaining array is always ≤ 0.

Insight: Deleting the shortest valid non-negative prefix or suffix
“never hurts”, i.e., is optimal.

Intuition: After taking a prefix with positive sum, we can take every
suffix we could have taken before.

Solution: Repeatedly delete the shortest valid non-negative prefix until
none remain, then do the same with suffixes, alternating
between them. If no such prefix or suffix exists at some
point, the answer is “impossible”.

Complexity: O(n).
Pitfall: Floating point imprecision. Use integers or resort to fractions.

+2

−3

+4

−4

+2

−1

Statistics: 54 submissions, 0 accepted, 31 unknown

L: Levelling Locks
Problem author: Ragnar Groot Koerkamp

Problem: Given n integers with average A, pick an element and
repeatedly add an element left or right such that the average
of the chosen range is always ≤ A.

Simplification: Consider the procedure in reverse.
Problem: Given n integers with average A, repeatedly delete an

element left or right such that the average is always ≤ A.
Simplification: Subtract A from each element.

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Definition: A valid prefix is a prefix such that when deleted one by one,
the sum in the remaining array is always ≤ 0.

Insight: Deleting the shortest valid non-negative prefix or suffix
“never hurts”, i.e., is optimal.

Intuition: After taking a prefix with positive sum, we can take every
suffix we could have taken before.

Solution: Repeatedly delete the shortest valid non-negative prefix until
none remain, then do the same with suffixes, alternating
between them. If no such prefix or suffix exists at some
point, the answer is “impossible”.

Complexity: O(n).
Pitfall: Floating point imprecision. Use integers or resort to fractions.

+2

−3

+4

−4

+2

−1

Statistics: 54 submissions, 0 accepted, 31 unknown

L: Levelling Locks
Problem author: Ragnar Groot Koerkamp

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Definition: A valid prefix is a prefix such that when deleted one by one,
the sum in the remaining array is always ≤ 0.

Insight: Deleting the shortest valid non-negative prefix or suffix
“never hurts”, i.e., is optimal.

Intuition: After taking a prefix with positive sum, we can take every
suffix we could have taken before.

Solution: Repeatedly delete the shortest valid non-negative prefix until
none remain, then do the same with suffixes, alternating
between them. If no such prefix or suffix exists at some
point, the answer is “impossible”.

Complexity: O(n).
Pitfall: Floating point imprecision. Use integers or resort to fractions.

+2

−3

+4

−4

+2

−1

Statistics: 54 submissions, 0 accepted, 31 unknown

L: Levelling Locks
Problem author: Ragnar Groot Koerkamp

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Definition: A valid prefix is a prefix such that when deleted one by one,
the sum in the remaining array is always ≤ 0.

Insight: Deleting the shortest valid non-negative prefix or suffix
“never hurts”, i.e., is optimal.

Intuition: After taking a prefix with positive sum, we can take every
suffix we could have taken before.

Solution: Repeatedly delete the shortest valid non-negative prefix until
none remain, then do the same with suffixes, alternating
between them. If no such prefix or suffix exists at some
point, the answer is “impossible”.

Complexity: O(n).
Pitfall: Floating point imprecision. Use integers or resort to fractions.

+2

−3

+4

−4

+2

−1

Statistics: 54 submissions, 0 accepted, 31 unknown

L: Levelling Locks
Problem author: Ragnar Groot Koerkamp

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Definition: A valid prefix is a prefix such that when deleted one by one,
the sum in the remaining array is always ≤ 0.

Insight: Deleting the shortest valid non-negative prefix or suffix
“never hurts”, i.e., is optimal.

Intuition: After taking a prefix with positive sum, we can take every
suffix we could have taken before.

Solution: Repeatedly delete the shortest valid non-negative prefix until
none remain, then do the same with suffixes, alternating
between them. If no such prefix or suffix exists at some
point, the answer is “impossible”.

Complexity: O(n).
Pitfall: Floating point imprecision. Use integers or resort to fractions.

+2

−3

+4

−4

+2

−1

Statistics: 54 submissions, 0 accepted, 31 unknown

L: Levelling Locks
Problem author: Ragnar Groot Koerkamp

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Definition: A valid prefix is a prefix such that when deleted one by one,
the sum in the remaining array is always ≤ 0.

Insight: Deleting the shortest valid non-negative prefix or suffix
“never hurts”, i.e., is optimal.

Intuition: After taking a prefix with positive sum, we can take every
suffix we could have taken before.

Solution: Repeatedly delete the shortest valid non-negative prefix until
none remain, then do the same with suffixes, alternating
between them. If no such prefix or suffix exists at some
point, the answer is “impossible”.

Complexity: O(n).
Pitfall: Floating point imprecision. Use integers or resort to fractions.

+2

−3

+4

−4

+2

−1

Statistics: 54 submissions, 0 accepted, 31 unknown

L: Levelling Locks
Problem author: Ragnar Groot Koerkamp

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Definition: A valid prefix is a prefix such that when deleted one by one,
the sum in the remaining array is always ≤ 0.

Insight: Deleting the shortest valid non-negative prefix or suffix
“never hurts”, i.e., is optimal.

Intuition: After taking a prefix with positive sum, we can take every
suffix we could have taken before.

Solution: Repeatedly delete the shortest valid non-negative prefix until
none remain, then do the same with suffixes, alternating
between them. If no such prefix or suffix exists at some
point, the answer is “impossible”.

Complexity: O(n).
Pitfall: Floating point imprecision. Use integers or resort to fractions.

+2

−3

+4

−4

+2

−1

Statistics: 54 submissions, 0 accepted, 31 unknown

L: Levelling Locks
Problem author: Ragnar Groot Koerkamp

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Definition: A valid prefix is a prefix such that when deleted one by one,
the sum in the remaining array is always ≤ 0.

Insight: Deleting the shortest valid non-negative prefix or suffix
“never hurts”, i.e., is optimal.

Intuition: After taking a prefix with positive sum, we can take every
suffix we could have taken before.

Solution: Repeatedly delete the shortest valid non-negative prefix until
none remain, then do the same with suffixes, alternating
between them. If no such prefix or suffix exists at some
point, the answer is “impossible”.

Complexity: O(n).
Pitfall: Floating point imprecision. Use integers or resort to fractions.

+2

−3

+4

−4

+2

−1

Statistics: 54 submissions, 0 accepted, 31 unknown

L: Levelling Locks
Problem author: Ragnar Groot Koerkamp

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Definition: A valid prefix is a prefix such that when deleted one by one,
the sum in the remaining array is always ≤ 0.

Insight: Deleting the shortest valid non-negative prefix or suffix
“never hurts”, i.e., is optimal.

Intuition: After taking a prefix with positive sum, we can take every
suffix we could have taken before.

Solution: Repeatedly delete the shortest valid non-negative prefix until
none remain, then do the same with suffixes, alternating
between them. If no such prefix or suffix exists at some
point, the answer is “impossible”.

Complexity: O(n).
Pitfall: Floating point imprecision. Use integers or resort to fractions.

+2

−3

+4

−4

+2

−1

Statistics: 54 submissions, 0 accepted, 31 unknown

L: Levelling Locks
Problem author: Ragnar Groot Koerkamp

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Definition: A valid prefix is a prefix such that when deleted one by one,
the sum in the remaining array is always ≤ 0.

Insight: Deleting the shortest valid non-negative prefix or suffix
“never hurts”, i.e., is optimal.

Intuition: After taking a prefix with positive sum, we can take every
suffix we could have taken before.

Solution: Repeatedly delete the shortest valid non-negative prefix until
none remain, then do the same with suffixes, alternating
between them. If no such prefix or suffix exists at some
point, the answer is “impossible”.

Complexity: O(n).
Pitfall: Floating point imprecision. Use integers or resort to fractions.

+2

−3

+4

−4

+2

−1

Statistics: 54 submissions, 0 accepted, 31 unknown

L: Levelling Locks
Problem author: Ragnar Groot Koerkamp

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Definition: A valid prefix is a prefix such that when deleted one by one,
the sum in the remaining array is always ≤ 0.

Insight: Deleting the shortest valid non-negative prefix or suffix
“never hurts”, i.e., is optimal.

Intuition: After taking a prefix with positive sum, we can take every
suffix we could have taken before.

Solution: Repeatedly delete the shortest valid non-negative prefix until
none remain, then do the same with suffixes, alternating
between them. If no such prefix or suffix exists at some
point, the answer is “impossible”.

Complexity: O(n).
Pitfall: Floating point imprecision. Use integers or resort to fractions.

+2

−3

+4

−4

+2

−1

Statistics: 54 submissions, 0 accepted, 31 unknown

L: Levelling Locks
Problem author: Ragnar Groot Koerkamp

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Definition: A valid prefix is a prefix such that when deleted one by one,
the sum in the remaining array is always ≤ 0.

Insight: Deleting the shortest valid non-negative prefix or suffix
“never hurts”, i.e., is optimal.

Intuition: After taking a prefix with positive sum, we can take every
suffix we could have taken before.

Solution: Repeatedly delete the shortest valid non-negative prefix until
none remain, then do the same with suffixes, alternating
between them. If no such prefix or suffix exists at some
point, the answer is “impossible”.

Complexity: O(n).

Pitfall: Floating point imprecision. Use integers or resort to fractions.

+2

−3

+4

−4

+2

−1

Statistics: 54 submissions, 0 accepted, 31 unknown

L: Levelling Locks
Problem author: Ragnar Groot Koerkamp

Problem: Given n integers, repeatedly delete elements left or right such
that the sum is always ≤ 0.

Definition: A valid prefix is a prefix such that when deleted one by one,
the sum in the remaining array is always ≤ 0.

Insight: Deleting the shortest valid non-negative prefix or suffix
“never hurts”, i.e., is optimal.

Intuition: After taking a prefix with positive sum, we can take every
suffix we could have taken before.

Solution: Repeatedly delete the shortest valid non-negative prefix until
none remain, then do the same with suffixes, alternating
between them. If no such prefix or suffix exists at some
point, the answer is “impossible”.

Complexity: O(n).
Pitfall: Floating point imprecision. Use integers or resort to fractions.

+2

−3

+4

−4

+2

−1

Statistics: 54 submissions, 0 accepted, 31 unknown

Language stats

C C++ Java Kotlin Python 3
0

20

40

60

80

100

120

140
correct
wrong answer
timelimit
run error
pending

Random facts

Jury work

• 1138 commits, of which 630 for the main contest (last year: 1061/564)

• 1192 secret test cases (last year: 1358) (≈ 91.7 per problem!)
• The CI job for Horse Habitat costs 45 minutes, or ˜€0.01 worth of heating Ragnar’s apartment
• 273 jury + proofreader solutions (last year: 196)
• The minimum1 number of lines the jury needed to solve all problems is

3 + 10 + 7 + 16 + 3 + 23 + 3 + 16 + 7 + 1 + 2 + 13 + 11 = 115

On average, 8.8 lines per problem (7.0 in BAPC 2023, 14.1 in preliminaries 2024)

Random facts

Jury work

• 1138 commits, of which 630 for the main contest (last year: 1061/564)
• 1192 secret test cases (last year: 1358) (≈ 91.7 per problem!)

• The CI job for Horse Habitat costs 45 minutes, or ˜€0.01 worth of heating Ragnar’s apartment
• 273 jury + proofreader solutions (last year: 196)
• The minimum1 number of lines the jury needed to solve all problems is

3 + 10 + 7 + 16 + 3 + 23 + 3 + 16 + 7 + 1 + 2 + 13 + 11 = 115

On average, 8.8 lines per problem (7.0 in BAPC 2023, 14.1 in preliminaries 2024)

Random facts

Jury work

• 1138 commits, of which 630 for the main contest (last year: 1061/564)
• 1192 secret test cases (last year: 1358) (≈ 91.7 per problem!)
• The CI job for Horse Habitat costs 45 minutes, or ˜€0.01 worth of heating Ragnar’s apartment

• 273 jury + proofreader solutions (last year: 196)
• The minimum1 number of lines the jury needed to solve all problems is

3 + 10 + 7 + 16 + 3 + 23 + 3 + 16 + 7 + 1 + 2 + 13 + 11 = 115

On average, 8.8 lines per problem (7.0 in BAPC 2023, 14.1 in preliminaries 2024)

Random facts

Jury work

• 1138 commits, of which 630 for the main contest (last year: 1061/564)
• 1192 secret test cases (last year: 1358) (≈ 91.7 per problem!)
• The CI job for Horse Habitat costs 45 minutes, or ˜€0.01 worth of heating Ragnar’s apartment
• 273 jury + proofreader solutions (last year: 196)

• The minimum1 number of lines the jury needed to solve all problems is

3 + 10 + 7 + 16 + 3 + 23 + 3 + 16 + 7 + 1 + 2 + 13 + 11 = 115

On average, 8.8 lines per problem (7.0 in BAPC 2023, 14.1 in preliminaries 2024)

Random facts

Jury work

• 1138 commits, of which 630 for the main contest (last year: 1061/564)
• 1192 secret test cases (last year: 1358) (≈ 91.7 per problem!)
• The CI job for Horse Habitat costs 45 minutes, or ˜€0.01 worth of heating Ragnar’s apartment
• 273 jury + proofreader solutions (last year: 196)
• The minimum1 number of lines the jury needed to solve all problems is

3 + 10 + 7 + 16 + 3 + 23 + 3 + 16 + 7 + 1 + 2 + 13 + 11 = 115

On average, 8.8 lines per problem (7.0 in BAPC 2023, 14.1 in preliminaries 2024)

1With PEP 8 compliant code golfing

Is it really PEP 8 compliant?

Yes, this submission for Jumbled Scoreboards is PEP 8 compliant!

Is it really PEP 8 compliant?

Yes, this submission for Jumbled Scoreboards is PEP 8 compliant!

And so is this submission for Grocery Greed. . .

Is it really PEP 8 compliant?

Yes, this submission for Jumbled Scoreboards is PEP 8 compliant!

And so is this submission for Grocery Greed. . .

And this one for Karaoke Compression. . .

Is it really PEP 8 compliant?

Yes, this submission for Jumbled Scoreboards is PEP 8 compliant!

And so is this submission for Grocery Greed. . .

And this one for Karaoke Compression. . .

But this one-liner for Extraterrestrial Exploration is not.

Thanks to:

The proofreaders
Arnoud van der Leer
Jaap Eldering
Jeroen Bransen (Hero)
Kevin Verbeek
Michael Vasseur
Mylène Martodihardjo
Pavel Kunyavskiy (Hero)
Wendy Yi

The jury
Gijs Pennings
Jonas van der Schaaf
Jorke de Vlas
Lammert Westerdijk
Maarten Sijm
Mees de Vries
Mike de Vries
Ragnar Groot Koerkamp
Reinier Schmiermann
Thore Husfeldt
Tobias Roehr
Wietze Koops

Want to join the jury? Submit to the Call for Problems of BAPC 2025 at:

https://jury.bapc.eu/

https://jury.bapc.eu/

