

Figure 1: Example board configuration (example 4)

Models are *coherent* if they can reach each other. Models are adjacent when ≤ 2 inches apart. For $n \geq 7$, each model must have at least two neighbors, for coherency.

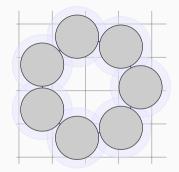


Figure 1: Example board configuration (example 4)

Problem author: Thore Husfeldt

Problem: Given *n* models on a gaming board, represented as non-overlapping disks with diameter between 25 and 165 mm. Check coherency.

Models are *coherent* if they can reach each other. Models are adjacent when ≤ 2 inches apart. For $n \geq 7$, each model must have at least two neighbors, for coherency.

Naive solution: Check adjacency for all pairs of models in $\mathcal{O}(n^2)$.

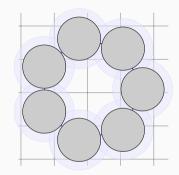


Figure 1: Example board configuration (example 4)

Problem author: Thore Husfeldt

Problem: Given *n* models on a gaming board, represented as non-overlapping disks with diameter between 25 and 165 mm. Check coherency.

Models are *coherent* if they can reach each other. Models are adjacent when ≤ 2 inches apart. For $n \geq 7$, each model must have at least two neighbors, for coherency.

Naive solution: Check adjacency for all pairs of models in $\mathcal{O}(n^2)$.

Make a graph of n nodes, and represent adjacency as undirected edges.

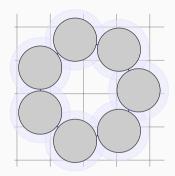


Figure 1: Example board configuration (example 4)

Models are *coherent* if they can reach each other. Models are adjacent when ≤ 2 inches apart. For $n \geq 7$, each model must have at least two neighbors, for coherency.

Naive solution: Check adjacency for all pairs of models in $\mathcal{O}(n^2)$.

Make a graph of n nodes, and represent adjacency as undirected edges.

Run your favourite algorithm for finding connected components, and check degrees, for $n \ge 7$.

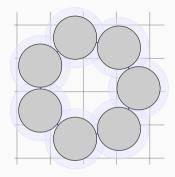


Figure 1: Example board configuration (example 4)

Models are *coherent* if they can reach each other. Models are adjacent when ≤ 2 inches apart. For $n \geq 7$, each model must have at least two neighbors, for coherency.

Naive solution: Check adjacency for all pairs of models in $\mathcal{O}(n^2)$.

Make a graph of n nodes, and represent adjacency as undirected edges.

Run your favourite algorithm for finding connected components, and check degrees, for $n \ge 7$.

In total, $\mathcal{O}(n^2)$. This is too slow, as $n \leq 200000$.

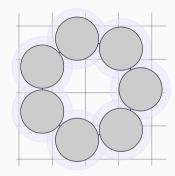


Figure 1: Example board configuration (example 4)

Idea: Use a grid of cells of 211×211 mm.

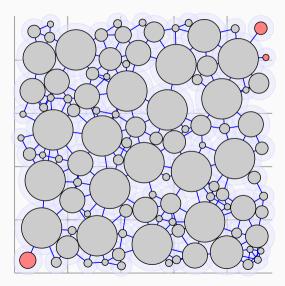


Figure 2: Secret testcase

Idea: Use a grid of cells of 211×211 mm.

Centres of disks are placed into corresponding cell. This can be done with a map / dictionary, in $\mathcal{O}(n \log n)$ or $\mathcal{O}(n)$.

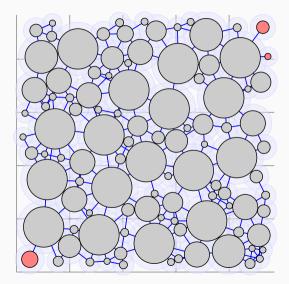


Figure 2: Secret testcase

Idea: Use a grid of cells of 211×211 mm.

Centres of disks are placed into corresponding cell. This can be done with a map / dictionary, in $\mathcal{O}(n \log n)$ or $\mathcal{O}(n)$.

Observation: Disks do not influence disks in non-adjacent cells (8-adjacency). (this is why 211 mm is chosen)

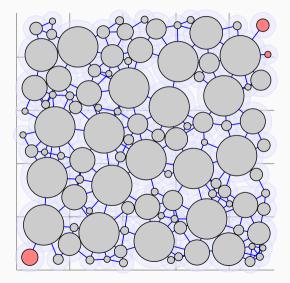


Figure 2: Secret testcase

Problem author: Thore Husfeldt

Idea: Use a grid of cells of 211 x 211 mm

Centres of disks are placed into corresponding cell. This can be done with a map / dictionary, in $\mathcal{O}(n \log n)$ or $\mathcal{O}(n)$.

Observation: Disks do not influence disks in non-adjacent cells (8-adjacency). (this is why 211 mm is chosen)

Algorithm: For each disk, loop through all 8 adjacent cells, and its own cell, and check all candidate disks for adjacency.

DFS, BFS or DSU can be used to find the connected components.

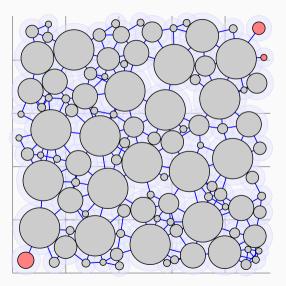


Figure 2: Secret testcase

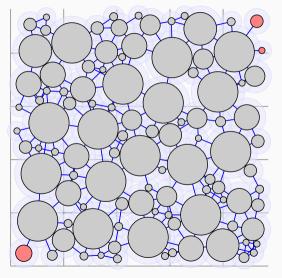
Idea: Use a grid of cells of 211 x 211 mm

Centres of disks are placed into corresponding cell. This can be done with a map / dictionary, in $\mathcal{O}(n \log n)$ or $\mathcal{O}(n)$.

Observation: Disks do not influence disks in non-adjacent cells (8-adjacency). (this is why 211 mm is chosen)

Algorithm: For each disk, loop through all 8 adjacent cells, and its own cell, and check all candidate disks for adjacency.

DFS, BFS or DSU can be used to find the connected components.



Time complexity?

Figure 2: Secret testcase

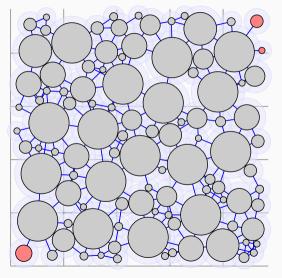
Idea: Use a grid of cells of 211 x 211 mm

Centres of disks are placed into corresponding cell. This can be done with a map / dictionary, in $\mathcal{O}(n \log n)$ or $\mathcal{O}(n)$.

Observation: Disks do not influence disks in non-adjacent cells (8-adjacency). (this is why 211 mm is chosen)

Algorithm: For each disk, loop through all 8 adjacent cells, and its own cell, and check all candidate disks for adjacency.

DFS, BFS or DSU can be used to find the connected components.



Time complexity?

Figure 2: Secret testcase

 $\mathcal{O}(n \times 9 \times \text{Max number of disks in one cell})$

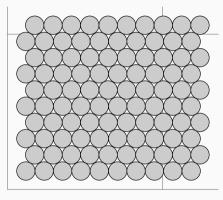


Figure 3: Worst case triangular packing with smallest diameter.

Roughly $\mathcal{O}(900 \times n)$

 $\mathcal{O}(\textit{n} \times 9 \times \text{Max} \text{ number of disks in one cell})$

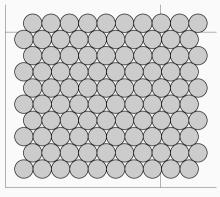


Figure 3: Worst case triangular packing with smallest diameter.

 $\mathcal{O}(n \times 9 \times \text{Max number of disks in one cell})$

Roughly $\mathcal{O}(900 \times n)$

More precise: Cells need to be $\Omega(D_{\text{max}})$ mm big, so

 $\mathcal{O}(\left(\frac{D_{\text{max}}}{D_{\text{min}}}\right)^2)$ disks of the minimum diameter

fit inside one cell

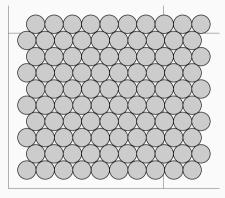


Figure 3: Worst case triangular packing with smallest diameter.

 $\mathcal{O}(n \times 9 \times \text{Max number of disks in one cell})$

Roughly $\mathcal{O}(900 \times n)$

More precise: Cells need to be $\Omega(D_{\text{max}})$ mm big, so

 $\mathcal{O}(\left(\frac{D_{\text{max}}}{D_{\text{min}}}\right)^2)$ disks of the minimum diameter

fit inside one cell

Many alternative solutions possible, but based on similar ideas.

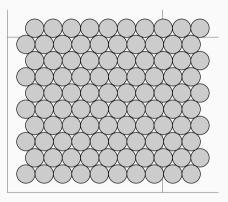


Figure 3: Worst case triangular packing with smallest diameter.

Time complexity: Time complexity is

 $\mathcal{O}(n \times 9 \times \text{Max number of disks in one cell})$

Roughly $\mathcal{O}(900 \times n)$

More precise: Cells need to be $\Omega(D_{\text{max}})$ mm big, so

 $\mathcal{O}(\left(\frac{D_{\text{max}}}{D_{\text{min}}}\right)^2)$ disks of the minimum diameter

fit inside one cell

Many alternative solutions possible, but based on similar ideas.

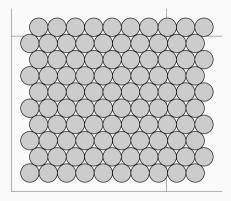


Figure 3: Worst case triangular packing with smallest diameter.

Statistics: 64 submissions, 9 accepted, 34 unknown