BAPC 2025

The 2025 Benelux Algorithm Programming Contest

Problems

Accidental Arithmetic
Boggle Sort
Coherency

Duo Detection
Excruciating Elevators
Faulty Connection
Garbage In, Garbage Out
Homesick

Intermill Logistics
Jacobi Numbers
Knowing the Clock

—r X - — I ommOoON0wX>

Linguistic Labyrinth

Copyright © 2025 by The BAPC 2025 Jury. This work is licensed under the Creative Commons

@ @ Attribution-ShareAlike 4.0 International License.
https://creativecommons.org/licenses/by-sa/4.0/

https://creativecommons.org/licenses/by-sa/4.0/

Problem A: Accidental Arithmetic 3

A Accidental Arithmetic Time limit: 1s

It is the 25th of January, 2025. You are working on your
final report for the statistics class. However, when you enter
the calculations into your trusted Brittle Arithmetic Portable
Calculator, you notice that the and [3 buttons have
malfunctioned. Whenever you press a numeric button (a
button from @ through @), an additional button press may
be registered immediately after: either the button, or the
[3 button, or neither (but never both). “Ugh,” you think to
yourself, “why did I not buy a Backup Arithmetic Portable

7 ;
Calculator...” But then you get an idea to save yourself from Your trusted Brittle Arithmetic

getting a low grade, .Portable Calculator.
Drawing by Freek Henstra

After some experimentation, you statistically determined that

pressing a numeric button results in an additional (+]input 45% of the time, and the same
holds for the [3 button (and never both at the same time). You decide that you should write
your report about your findings. In addition to statistical analysis, the teacher requires you to
perform some probabilistic predictions based on a statistical model. You decide to investigate
what your calculator does when you try to simply input a natural number.

Given a natural number n, you consider entering the number into the calculator by pressing
the numeric buttons corresponding to the standard base 10 representation of n. The calculator
may register a |+]or [3 button press in between the digits of n, which results in an arithmetic
expression. You wonder what happens if you press B to evaluate the expression. Luckily, if
your expression ends with a or [3, the calculator ignores this, such that this evaluation
always results in an integer. To finish your report, you decide to write a program that
determines the expected value of this result for any given value of n.

Input

The input consists of:

o One line with an integer n (0 < n < 10199) the number that you will enter into the
calculator.

Output
Output the expected value of the result.

Your answer should have an absolute or relative error of at most 1076.

Sample Input 1 Sample Output 1
12345 5.4321

Problem A: Accidental Arithmetic

Sample Input 2 Sample Output 2
777777 42
Input 3

31415926535897932384626433832795028841971693993751

Output 3

141.5189

Problem B: Boggle Sort 5

B Boggle Sort Time limit: 1s

It is the 25th of February, 2025. You have enjoyed another
spirited evening of Boggle with your friends. After everybody
left, you have thoroughly cleaned the apartment. All that is
left is to bring the Boggle tray in order. You start to wonder:
would it be possible to bring the Boggle tray in alphabetic order,
without swapping any dice, but only by rotating them?

3 el : L A tray of Boggle dice, out of order.
The Boggle tray consists of 16 six-sided dice. Each die is labelled OO BY 20 by Hich Brooks on
with a letter from the English alphabet on each face. A single Wikimedia Commons

die contains a face labelled “Qu”. No letter appears 4 or more
times on the same die. By turning a die once, you can move any of the sideways-facing letters
up. Turning a die twice moves the downwards-facing letter up.

A P D S
L{I|B]|]Y C|A|D|M E|Z|V|N RIE|L|C
T E A
S A (0] H
N|E|[|O|D R{O|M|H FIX|R|BJ| |I E|P
W S | N
Qu
LIP|S|T JIA|IB{M| | I |C|A|T N|{K|T|D
U)
G G Y
E LU E|I|T|IN| |W|G|R|U| |E | | E
K V I H

Figure B.1: Visualization of the first sample input. The 16 Boggle dice are shown in reading order.
For each die, the face in the center of the cross (“I” in the first die) is upwards-facing and the face
on the far right (“Y” in the first die) is downwards-facing. The shaded die faces describe an optimal
solution requiring 15 turns.

Bring the tray into alphabetically nondecreasing order, using standard reading directions
(left-to-right, top-to-bottom), using as few turns as possible. Letter case plays no role and the
two-letter face is treated as “Q” followed by “U”, so “QuU” is sorted but “QuT” is not.

https://commons.wikimedia.org/wiki/File:Boggle_(4039402557).jpg

Problem B: Boggle Sort 6

Input

The input consists of:

¢ One line with 16 letters, describing the currently upwards-facing faces of each die.
e Four lines with 16 letters, describing the currently sideways-facing faces of each die.

e One line with 16 letters, describing the downwards-facing faces of each die.

In each line, the ith letter describes the ith die for 1 < i < 16.

All letters are English uppercase letters (A-2).

The letter “Q” stands for the two-letter face “Qu” and appears exactly once in the input.
No letter appears 4 or more times on the same die.

Output

If it is possible to bring the tops of the dice into alphabetic order, output the minimum number
of turns needed to do so. Otherwise, output “impossible”.

Sample Input 1 Sample Output 1

IAZEEOXSPACKYIGF 15
APDSSAOHEQAOGGLY
LCERNRFILJINEEWE
BDVLOMRESBATLTRI
TEAAWSINUOOUKVIH
YMNCDHBPTMTDUNUE

Sample Input 2 Sample Output 2

EXFETDMNMGDBRSRM impossible
TIEGINOVRETACNUA
PRYKASAEATNTSHID
SOHUOEJDHVKYLPLC
UFIYAWBZONUIEIWE
LBELCOQASIOLAEGP

Problem C: Coherency 7

C Coherency Time limit: 8s

N

It is the 25th of March, 40025 CE in the world of Battle
Aze Player Clash 40,000 (BAPC40K). This futuristic table-top
miniatures wargame is played with endearing figurines called

TR

models, each of which is placed on a circular base. The models -
are placed on a 100 km x 100 km gaming board. A collection of ./,
such models forms a coherent unit if between any pair of models

there is an unbroken chain of models that have a Euclidean L | | i \ \-E'

distance of at most two inches! between the edges of their bases. The miniatures are typically

. . . hand-painted by the players.
Moreover, if the unit contains seven models or more, each model

must be within two inches of at least two other models. Given the positions of a collection of
models with varying base diameters, determine whether they form a single coherent unit.

One can prove that for any valid input for this problem, if the diameters of the circular bases
differ from the given diameter by at most 107° mm, the coherency of a unit of models does
not change.

Input

The input consists of:

« One line with an integer n (2 < n < 2-10°), the number of models.

« n lines, each with three integers z, y, and d (0 < x,y < 108,
d € {25,28, 32,40, 50,65, 80,90, 100, 130, 160}), describing a model that has its center
coordinates at (z,y) and a base diameter of d, all given in millimeters.

Each model (including the base) fits on the gaming board.

It is guaranteed that no two models are overlapping, but the models can touch.

Output

If the n models form a single coherent unit, output “yes” Otherwise, output “no”.

Sample Input 1 Sample Output 1
2 yes

13 13 25

88 13 25

Sample Input 2 Sample Output 2
2 no

13 13 25

89 13 25

'Recall that an inch equals 25.4 mm.

Problem C: Coherency 8

Sample Input 3 Sample Output 3

7 no
1255 1120 65
1204 1226 160
1090 1252 65
998 1179 160
998 1061 65
1090 988 160
1204 1014 65

Sample Input 4 Sample Output 4

7 yes
1066 910 130
1007 1032 130
875 1062 130
770 978 130
770 843 130
875 758 130
1007 788 130

O—0O @ ©

Sample | Sample 2

Sample 3 Sample 4

Figure C.1: Tllustration of the samples. Samples 1 and 4 are coherent. Sample 2 is not coherent,
because the two models are too far away. Sample 3 is not coherent, because not all models are within
two inches of two other models.

Problem D: Duo Detection 9

D Duo Detection Time limit: 10s

It is the 25th of April, 1825. English inventer William Fothergill
Cooke and English scientist Charles Wheatstone are working on
an early prototype of an electrical telegraph system.? This system
consists of a transmitter and a receiver. The transmitter can
send messages to the receiver, which we model as a sequence of
positive integers. However, the prototype is far from flawless, so
quite often, an integer that is transmitted is not actually received.
Integers never get altered through the connection, though, so all
received integers are guaranteed to have been transmitted.

To remedy this flaw, Cooke and Wheatstone came up with an

error correction code. Together, they agreed on a fixed list of n

The Cooke and Wheatstone electric
telegraph can transmit letters with

possible messages, and assigned each message a list of positive
integers. To send a message from the list, they simply send the the use of 5 needles which point to

. the transmitted letters. CC BY-SA
corresponding list of integers. Sometimes, some integers may get 4.0 by Geni on Wikimedia Commons
lost or arrive in a different order, but if enough integers remain,

the hope is that there is still only one possible message.

You work as a postman, so you see the innovation of communication technology as a direct risk
to your job security. You decide to mess with Cooke and Wheatstone to delay the development
of their telegraph system. You have learned about their error correction code, and you have
secretly obtained a copy of their message list with all the lists of integers. You have figured
out a way to forcefully interrupt the transmission of an integer, so you decide to use this to
ruin their system. To avoid suspicion, you decide that at least two integers should remain
uninterrupted when a message is sent. Thus, your goal is to determine whether any message
can be made ambiguous by interrupting all but two of its integers. Then, whenever such a
message will be sent, you can make it ambiguous by interrupting the appropriate integers.

Input

The input consists of:

e One line with an integer n (2 < n < 50000), the number of possible messages.

 n lines (one for each message), each with an integer k (2 < k < 10°), the number of
integers assigned to the message, followed by those k integers x (1 < x < 10%). It is
guaranteed that the k integers in a message are pairwise distinct.

The total number of integers in all messages combined is at most 10°.

20ne may point out that Cooke and Wheatstone actually did not release a telegraph design until 1837, but
obviously, this just means you were successful in this solving this problem! :)

https://commons.wikimedia.org/wiki/File:Cooke_and_Wheatstone_electric_telegraph.jpg

Problem D: Duo Detection 10

Output

If a pair of distinct integers exists that are assigned to multiple messages, output these two
integers in any order, followed by the 1-based indices of two of the messages they are assigned
to. Otherwise, output “impossible”.

If there are multiple valid solutions, you may output any one of them.

Sample Input 1 Sample Output 1
3 3531
5193765

4 2 4 6 8

4 75 3 2

Sample Input 2 Sample Output 2
3 impossible

2 42 1337
2 42 123456789
2 1337 123456789

Problem E: Excruciating Elevators 11

E Excruciating Elevators Time limit: 2s

It is the 25th of May, 3025. The EEMCS building at TU Delft has grown g smewmmms

4

to 10% floors beyond the ground floor! The floors are now numbered
0,1,...,105, but there are still only four elevators. Moreover, the elevators
have malfunctioned and are currently turned off. As employee of the
Building Ascension Plans Company, you are tasked to fix the elevators.

You first have to order some components, which will take a month to
arrive at the ground floor. After collecting the components, you must

visit n floors f1,..., fn in order. At each floor f;, you must replace some i
component, which takes t; seconds. After replacing the final component, noah: iﬁﬁisﬂzlﬂs‘iézl&ﬁ
the elevators will be fixed.

The stairs have long been removed, since people got tired of walking up millions of flights
of stairs. You thus have to use the elevators to travel between the floors. You can turn on
the elevators, but when you turn one on, you can no longer turn it off. Once turned on, an
elevator will move up and down between floors 0 and 10% indefinitely. The elevators move at a
speed of one floor every second without stopping, but you are agile enough to enter and exit.

You know exactly when the components will arrive. In the meantime, you can determine when
to turn on each elevator. This timing determines the starting configuration of each elevator
when the components arrive. Since you have a month, you can enforce any arbitrary starting
configuration of the elevators. What is the minimum possible time to fix the elevators?

As an example, consider the first sample input. You can ensure one elevator starts at ground
floor going up, and another starts at floor 750 000 going up. Entering the former elevator
immediately, you arrive at floor 600000 after 600000 seconds. After 50000 more seconds,
you finish replacing the component at floor 600000. In the meantime, the latter elevator
reached the top floor after 250 000 seconds, when it started going down. Now, 400 000 seconds
later, this elevator is at floor 600 000 going down. You can enter this elevator immediately
and exit 200000 seconds later at floor 400000. Finally, after 150000 seconds, you finish
replacing the component at floor 400000, and the elevators are fixed! The total time is
600 000 + 50 000 + 200 000 + 150 000 = 1000 000 seconds.

Input

The input consists of:

o One line with an integer n (1 < n < 35), the number of floors to visit.

« One line with n integers fi,..., fn (0 < fi < 10° for each 7), the numbers of the floors
you must visit.

e One line with n integers ¢1,...,t, (1 <t; < 10° for each i), the necessary time spent on
each floor in seconds.

No two consecutive floors f;, f;+1 are equal, and f; is non-zero.

Problem E: Excruciating Elevators 12

Output

Output the minimum possible time in seconds to fix the elevators after the components have
arrived and you start at the ground floor.

Sample Input 1 Sample Output 1

2 1000000
600000 400000

50000 150000

Sample Input 2 Sample Output 2
10 4000012
12345678910

1111111111

Problem F': Faulty Connection 13

F Faulty Connection Time limit: 1s

It is the 25th of June, 1825. English inventer William Fothergill
Cooke and you, English scientist Charles Wheatstone, are working
on an early prototype of an electrical telegraph system.® This
system consists of a transmitter and a receiver. The transmitter
can send messages to the receiver, which we model as a sequence
of positive integers. However, the prototype is far from flawless, so
quite often, an integer that is transmitted is not actually received.
Integers never get altered through the connection, though, so all
received integers are guaranteed to have been transmitted.

To remedy this flaw, Cooke and you are working on an error

correction code. The idea is to agree on a fixed list of 600 possible

The Cooke and Wheatstone electric
telegraph can transmit letters with

messages, indexed 1 to 600, and assign each message a list of 30
positive integers of at most 1000. To send a message from the list, the use of 5 needles which point to

. the transmitted letters. CC BY-SA
you simply send the corresponding list of integers. Sometimes, 4.0 by Geni on Wikimedia Commons
some integers may get lost or arrive in a different order, but if

enough integers remain, the hope is that there is still only one possible message.

When trying this out back in April, you noticed that, with some bad luck, the connection
can get very faulty. Sometimes only two integers remained, which can easily make a message
ambiguous! You decide to investigate whether this issue can be resolved purely by improving
the error correction code. To each of the 600 possible messages, you need to assign a list of 30
positive integers of at most 1000, such that receiving any two integers in any order from any
one of the lists uniquely determines the corresponding message.

Your program will be run multiple times for each test case. In the first pass, your program
will be given an index of a message to send, which your program should assign a list of 30
integers. In subsequent passes, your program will be given two of the 30 integers from the
first pass in any order, which it should then decode to retrieve the original message.

Your submission may take up to 1 second for each pass.

A testing tool is provided to help you develop your solution.

30ne may point out that Cooke and Wheatstone actually did not release a telegraph design until 1837, but
obviously, this is due to the problem we are trying to solve here! :)

https://commons.wikimedia.org/wiki/File:Cooke_and_Wheatstone_electric_telegraph.jpg

Problem F': Faulty Connection 14

Input
This is a multi-pass problem.

The input consists of:

¢ One line with the action your program needs to perform:

— “send” if you need to send a message.

— “receive” if you need to receive two integers and determine the corresponding
message.

o If the action is “send”, one line with an integer k£ (1 < k& < 600), the index of the
message to send.

o If the action is “receive”, one line with two distinct integers @ and b (1 < a,b < 1000)
from the output of your program in the first pass, in any order.
Output

If the action is “send”, output 30 distinct integers = (1 < x < 1000), assigning this list of
integers to the message with index k.

If the action is “receive”, output the index k of the corresponding message.

Note

The displayed sample output of a “send” action uses line wrapping for display purposes.
Whitespace in the output is treated as usual.

Sample Case 1

Input Pass 1 Output
send 814 734 58 792 286 974 893 735
42 538 498 916 163 226 32 160 659

980 994 775 334 44 492 276 983
398 885 179 888 755 121

Input Pass 2 Output
receive 42

286 58

Input Pass 3 Output
receive 42

163 492

Problem G: Garbage In, Garbage Out 15

G Garbage In, Garbage Out Time limit: 2s

It is the 25th of July, 2525. Now that the usage of Large
Language Models (LLMSs) is so ubiquitous, it has become
nearly impossible to find actual human-made articles on
the internet and not get lost in all the gibberish produced
by LLMs.

(Un)fortunately, LLM technology has regressed significantly.

Neural networks have been trained on data that is mostly
generated by older LLMs, which in turn were trained on Similarly, in five hundred years, this is what

artificially generated images will look like.

even older recycled data. As a result, the output produced
by most LLMs is a long string of lowercase letters, each chosen uniformly at random and
independently of the others.

You decided to make a program to scavenge the internet in search of human-made articles.
Your program must determine whether a given text is human-made or generated by an LLM.

A given text is guaranteed to be exactly one of the following;:

o Human-made, in which case it is a fixed concatenation (without spaces) of words from a
given word list.

e Not human-made and, therefore, generated by an LLM, in which case each character is
chosen independently and uniformly at random.

Input

The input consists of:

e One line with a string s, the given text to check.
e One line with an integer n, the number of words in the word list.

o n lines, each with a string w (6 < |w| < 10), the words in the word list. The words in
the word list are distinct and fixed per test case.

All input strings only consist of English lowercase letters (a-z).

Your submission will be run on exactly 100 test cases, all of which will have |s| = 3 - 10° and
n = 5000. The samples are smaller and for illustration only.

For each test case where s is human-made, s is fixed and does not change between each of your
submissions. For each test case where s is generated by an LLM, each of your submissions will
receive a new string s, generated from independently and uniformly picking random English
lowercase letters (a-z).

Problem G: Garbage In, Garbage Out 16

Output

If the given string was human-made, output “yes”. Otherwise, if it was generated by an LLM,
output “no”.

Input 1

ballooncodingballoonacceptedchallengechallengecoding
5

accepted

balloon

challenge

coding

algorithms

Output 1

yes

Input 2

nlaiueakuyclocedxlwvxdbiifgjbinucjabzyagakhohgympi
5

aaaaaaaaaa

bbbbbbbbbb

aababbb

aaabbbaaa

abaaba

Output 2

no

Input 3

aaaaaaaaaaabbbbbbbbbbaaaaaaaaaaaaaaabbbbbbbbbbbbbb
5

aaaaaaaaa

bbbbbbbbbb

aabbbbb

aaaaabbbb

bbbbba

Output 3

yes

Problem H: Homesick 17

H Homesick Time limit: 2s

It is the 25th of August, 225 BCE. You are in charge of the
annual road trip of the Backtracking-Averse Promenaders Club
in Rome. Alas, you get homesick easily and would much rather
stay at home. Therefore, your goal is to keep the road trip as
short as possible. Traditionally, the road trip cannot backtrack
along a road it just used — your friends would start to complain.
Specifically, if you travel directly from site x to site y, you cannot

immediately go back from y to x along the same road. Ancient Romans, promenading on Via

Appia. Public Domain by Strafforello
Gustavo on Wikimedia Commons

Figure H.1: Sample Input 2. The illustration shows a valid trip using six roads. The road connecting
sites 1 and 4 is used twice.

You are given a list of sites to possibly visit and the roads connecting them. Find the road
trip with the shortest length that would keep your friends happy.

The road trip must start at site 1, your home, and must visit at least one other site.

Input
The input consists of:

e One line with two integers n and m (2 <n < 10°5,1<m<2- 105), the number of sites
and the number of roads.

o m lines, each with two integers v and v (1 < u < v < n), indicating there is a road
between sites u and v. Roads can be travelled in either direction. Each pair of sites is
connected by at most one road.

https://commons.wikimedia.org/wiki/File:Via_Appia_coi_suoi_monumenti_sepolcrali.jpg

Problem H: Homesick 18

Output

If there is no road trip possible, output “impossible”. Otherwise, output a your planned
road trip, described by an integer k, the number of sites to visit on the road trip (including
your home twice), followed by the k sites, in the order of visiting them.

If there are multiple valid solutions, you may output any one of them.

Sample Input 1 Sample Output 1
6 7 4

12 1321

2 3

13

1 4

4 5

5 6

16

Sample Input 2 Sample Output 2
12 13 7

1 2 1456741

2 3

1 4

4 5

56

6 7

4 7

18

8 9

9 10

10 11

11 12

9 12

Sample Input 3 Sample Output 3
3 2 impossible

1 2

2 3

Sample Input 4 Sample Output 4
4 3 impossible

2 3

3 4

2 4

Problem I: Intermill Logistics 19

I Intermill Logistics Time limit: 1s

It is the 25th of September, 1825. Having just completed a
record-setting wheat harvest, you wonder what to do with all this
wheat. With a stroke of genius, you decide to use all of this wheat
to bake your favourite type of cookie: stroopwafels. Of course,
all this wheat should be ground to flour first. Because you cannot
wait to start baking, you want to do this as fast as possible, so

you decide to contact all flour mills in the Netherlands to ask ; .
them fOI' help One of the flour mills.

For each of these flour mills, you know how fast they can grind wheat to flour and how long it
takes for a shipment to travel to and from the mill. You have enough grain ships available
that can transport wheat to these mills, and bring the flour back from the mills. Dividing the
wheat optimally between these mills, how long does it take until you have received back all
the wheat?

As an example, consider the first sample case. To divide the wheat optimally between the
three mills, you ship 400 kilograms to the first, 120 to the second, and 480 to the third. The
first mill requires 5 hours to grind its wheat, the second requires 1 hour, and the third requires
3 hours. Combined with the shipping time to and from each mill, you receive all wheat back
after exactly 11 hours.

In the second sample case, we send all of the wheat to the first mill. This mill can grind all
100 kilograms of wheat in 1 hour, which together with the 2 hours for shipping back and forth
results in a total of 3 hours. As the shipping for the second mill would already take 4 hours, it
is optimal to only use the first mill.

Input
The input consists of:
o One line with two integers n and w (1 < n < 105, 1 <w < 109), the number of mills
and the amount of wheat you have, in kilograms.
o n lines, each with two integers p and ¢ (1 < p,t < 10?), describing a mill that can process
p kilograms of wheat per hour, located t hours away.

Output

Output the number of hours until you have received back all the wheat, when dividing the
wheat optimally between the mills.

Your answer should have an absolute or relative error of at most 1076.

Problem I: Intermill Logistics

Sample Input 1

Sample Output 1

20

3 1000
80 3
120 5
160 4

11

Sample Input 2

Sample Output 2

2 100
100 1
500 2

3

Sample Input 3

Sample Output 3

3 7

11
11
11

4.3333333

Problem J: Jacobi Numbers 21

J Jacobi Numbers Time limit: 1s

Today, a new paper has been published in the Bulletin of
Apocryphal Pioneers in Computation. According to this paper,
the forgotten German number theorist Wahnfried Imaginus
Jacobi (1806-1853), while still a secondary student in Potsdam,
investigated the decomposition of integers into sums of cubes.
Among the examples noted in the surviving fragments of his
notebooks are

2025 =134+ 23+ 33+ 43+ 534+ 634+ 73 4+8%493

and the more curious expression
Carl Gustav Jacob Jacobi

3= 13 + 13 + 13 — 43 + 43 + (_5)37 (1804-1851), famous brother of

‘Wahnfried Imaginus. Public domain
on Wikimedia Commons

which shows that a solution need not be unique. Jacobi restricted his attention to small
integers and probably did not know the decomposition

3 = 569936 821 221 962 380 720° 4 (—569 936 821 113 563 493 509)® + (—472 715493 453 327 032)% ,

which was discovered only recently.* However, Jacobi did manage to prove that a decomposition
into cubes always exists for all positive integers up to 9241, the 28th cuban prime of the first
kind. Although his work was never published, references to the method appear in a marginal
annotation in an 1823 letter to his famous brother Carl Gustav Jacob.

Given a positive integer n, output a list of at most 10000 integers between —10000 and 10 000
such that the sum of their cubes equals n.
Input

The input consists of:

o One line with an integer n (1 < n < 9241), the number to decompose into cubes.

Output

Output an integer k£ (1 < k < 10000), the number of terms in your solution, followed by
k integers a1, ..., ar (—10000 < a; < 10000 for each i), such that a3 + -+ + a3 = n.

If there are multiple valid solutions, you may output any one of them.

Sample Input 1 Sample Output 1

2025 9
1234567809

4Booker, Andrew R.; Sutherland, Andrew V. (2021), “On a question of Mordell”, Proceedings of the National
Academy of Sciences, 118 (11)

https://commons.wikimedia.org/wiki/File:Carl_Jacobi.jpg

Problem J: Jacobi Numbers

Sample Input 2

Sample Output 2

22

45

3
2025 -2369 1709

Sample Input 3

Sample Output 3

15

3
-1 2 2

Sample Input 4

Sample Output 4

9241

2
-55 56

Problem K: Knowing the Clock 23

K Knowing the Clock Time limit: 1s

It is the 25th of November, 1625. You have put a lot of time into
making a mechanical watch, but you are unsure if the hands are
placed correctly. Even a watch that is not running is correct
twice a day, but if the hands of the watch do not correspond to
a real time, it is never correct at all. Without wasting any more
time, you measure the angles of the hands and check whether

they correspond to a real time.

. CC BY-SA 4.0 by Jordiferrer on
For example, consider the first sample input, visualized in Wikimedia Commons

Figure K.1: if the minute hand points to a quarter past
(90 degrees from 12 o’clock), then the hour hand cannot point exactly to 2 o’clock (60 degrees
from 12 o’clock).

You know that both hands of the watch are moving continuously.

Figure K.1: Illustrations of the sample inputs. The first and third sample inputs do not correspond to
a real time. The second and fourth sample inputs do correspond to a real time.

Input
The input consists of:
o One line with two integers h and m (0 < h,m < 359), the exact clockwise angle that

the hour hand is from 12 o’clock and the exact clockwise angle that the minute hand is
from 12 o’clock. Both angles are given in degrees.

Output

If the angles of the hands correspond to a real time, output “yes” Otherwise, output “no”.

Sample Input 1 Sample Output 1
60 90 no
Sample Input 2 Sample Output 2

30 0 yes

https://commons.wikimedia.org/wiki/File:H4_timekeeper.jpg

Problem K: Knowing the Clock

Sample Input 3

Sample Output 3

24

30 1

no

Sample Input 4

Sample Output 4

32 24

yes

Problem L: Linguistic Labyrinth 25

L. Linguistic Labyrinth Time limit: 15s

It is the 25th of December, 2025. As a Christmas tradition, you
gather a group of friends to solve a puzzle. Among your friends are
wordcels and shape rotators, who are respectively better at thinking
with words and with mental images. This puzzle challenges even
the smartest wordcel and the most brilliant shape rotator:

There is a 3-dimensional grid with points at all integer coordinates
(x,y,2) with 1 < z,y,z < n, and each point has a label associated
with it, which is either ‘B’, ‘A’, ‘P’, or ‘C’. In this grid, you need to
find occurrences of the curly word “BAPC”. A curly word “BAPC” Spoilc‘r ;lcm thls is one of

the secret test cases.

is a collection of four points in the grid such that:

o The labels spell out “BAPC” (in this order).

e The angle that the triplet “BAP” makes is 90 degrees: the vectors from B — A and from
A — P form a 90-degree angle.

e The angle that the triplet “APC” makes is 90 degrees: the vectors from A — P and from
P — C form a 90-degree angle.
Note that the two angles do not need to be axis-aligned. As an example, see the third sample
case, visualized in Figure L.1.

How many occurrences of the curly word “BAPC” are in the given grid?

Input

The input consists of:

e One line with an integer n (1 < n < 22), the size of the grid.
¢ 1 blocks of n + 1 lines. Each block of n + 1 lines consists of:

— One line with a hyphen (-), to make the input more human-readable.

— n lines with n characters, each character being either ‘B’, ‘A’, ‘P’, or ‘C’,
representing all labels of one horizontal layer of the 3-dimensional grid.

Output

Output the number of curly words “BAPC” in the 3-dimensional grid.

Sample Input 1 Sample Output 1
1 0

B

Problem L: Linguistic Labyrinth 26

Sample Input 2 Sample Output 2
2 2

PA
PB
CccC
PB

Sample Input 3 Sample Output 3
3 2

BBB
BCB
BCB

BBC
CBA
BBB

BBB
BPB
BBB

Figure L.1: Visualization of the third sample input. In this grid, there are two curly words “BAPC”,
using the highlighted letters.

	Problems
	Accidental Arithmetic
	Boggle Sort
	Coherency
	Duo Detection
	Excruciating Elevators
	Faulty Connection
	Garbage In, Garbage Out
	Homesick
	Intermill Logistics
	Jacobi Numbers
	Knowing the Clock
	Linguistic Labyrinth

