F: Faulty Connection

Problem author: Mike de Vries

Problem: Find 600 sets of 30 integers from 1 to 1000 such that no two sets intersect in two or more integers.

Problem: Find 600 sets of 30 integers from 1 to 1000 such that no two sets intersect in two or more integers.

Idea: Any two points on the plane define a unique line, and any two lines have at most one intersection point. We can assign lines to messages, and points on those lines to numbers. Since two different lines have at most one intersection point, two messages have at most one number in common.

Problem: Find 600 sets of 30 integers from 1 to 1000 such that no two sets intersect in two or more integers.

Idea: Any two points on the plane define a unique line, and any two lines have at most one intersection point. We can assign lines to messages, and points on those lines to numbers. Since two different lines have at most one intersection point, two messages have at most one number in common.

Solution: Use the lines in \mathbb{F}_{31}^2 .

Problem author: Mike de Vries

In English: Take a 31×31 grid and perform all arithmetic modulo 31 (make it wrap around the boundaries like in the game of Asteroids). Use lines of the form y = ax + b (with $a, b \in \{0, 1, ..., 30\}$).

Assign a line to each message, and a number to each point.

In English: Take a 31×31 grid and perform all arithmetic modulo 31 (make it wrap around the boundaries like in the game of Asteroids). Use lines of the form y = ax + b (with $a, b \in \{0, 1, ..., 30\}$).

Assign a line to each message, and a number to each point.

Note: While lines may intersect multiple times when wrapping around, the fact that 31 is prime means that two different lines will intersect in at most one integer coordinate.

- In English: Take a 31×31 grid and perform all arithmetic modulo 31 (make it wrap around the boundaries like in the game of Asteroids). Use lines of the form y = ax + b (with $a, b \in \{0, 1, ..., 30\}$).
 - Assign a line to each message, and a number to each point.
 - **Note:** While lines may intersect multiple times when wrapping around, the fact that 31 is prime means that two different lines will intersect in at most one integer coordinate.
 - **Analysis:** There are $31 \times 31 \le 1000$ points, and $31 \times 31 \ge 600$ such lines, with $31 \ge 30$ points each.

Assign a line to each message, and a number to each point.

Note: While lines may intersect multiple times when wrapping around, the fact that 31 is prime means that two different lines will intersect in at most one integer coordinate.

Analysis: There are $31 \times 31 \le 1000$ points, and $31 \times 31 \ge 600$ such lines, with $31 \ge 30$ points each.

Bonus: It is possible to solve the problem for $31^2 + 31 + 1 = 993$ messages of 32 numbers using only numbers up to 993.

Example: One message may correspond to the red line, and another to blue. Receiving the points (2,28) and (16,8), the red line can be reconstructed using modular arithmetic. The red and blue line (y=1x+5) intersect in exactly one integer point: (7,12).



Figure 1: Lines corresponding to y = 3x + 22 (red) and y = 1x + 5 (blue).

Example: One message may correspond to the red line, and another to blue. Receiving the points (2,28) and (16,8), the red line can be reconstructed using modular arithmetic. The red and blue line (y=1x+5) intersect in exactly one integer point: (7,12).

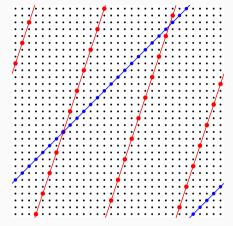


Figure 1: Lines corresponding to y = 3x + 22 (red) and y = 1x + 5 (blue).

Statistics: 42 submissions, 10 accepted, 24 unknown