Problem author: Reinier Schmiermann

Problem: Write n as a sum of cubes.

Problem author: Reinier Schmiermann

Problem: Write n as a sum of cubes.

Observation: Note that $1 = 1^3$.

Problem author: Reinier Schmiermann

Problem: Write n as a sum of cubes.

Observation: Note that $1 = 1^3$.

Solution: With the given output bounds, it is possible to simply print 1, repeated n times.

Problem author: Reinier Schmiermann

Problem: Write n as a sum of cubes.

Observation: Note that $1 = 1^3$.

Solution: With the given output bounds, it is possible to simply print 1, repeated n times.

Running time: $\mathcal{O}(n)$.

Problem author: Reinier Schmiermann

Problem: Write n as a sum of cubes.

Observation: Note that $1 = 1^3$.

Solution: With the given output bounds, it is possible to simply print 1, repeated n times.

Running time: $\mathcal{O}(n)$.

Decompose: Decompositions of the numbers between 1 and 9241 into sums of cubes using as few terms as possible:

singular cubes,	like $27 = 3^3$	20
sums of two cubes,	like $9241 = 56^3 + (-55)^3$	453
sums of three cubes,	like $9240 = 56^3 + (-55)^3 + (-1)^3$	5761
sums of four cubes,	like $9239 = 32^3 + (-25)^3 + (-22)^3 + 14^3$	3007

Note that the terms can be much larger than the sum, e.g.,

$$311 = -9529^3 - 8185^3 + 8228^3 + 9497^3$$
.

Careful C++ implementation computes this within time bounds.

Problem: Write n as a sum of cubes.

Observation: Note that $1 = 1^3$.

Solution: With the given output bounds, it is possible to simply print 1, repeated n times.

Running time: $\mathcal{O}(n)$.

Decompose: Decompositions of the numbers between 1 and 9241 into sums of cubes using as few terms as possible:

singular cubes,	like $27 = 3^3$	20
sums of two cubes,	like $9241 = 56^3 + (-55)^3$	453
sums of three cubes,	like $9240 = 56^3 + (-55)^3 + (-1)^3$	5761
sums of four cubes,	like $9239 = 32^3 + (-25)^3 + (-22)^3 + 14^3$	3007

Note that the terms can be much larger than the sum, e.g.,

$$311 = -9529^3 - 8185^3 + 8228^3 + 9497^3$$
.

Careful C++ implementation computes this within time bounds.

Constant time: Determine (optimal) decomposition off-line for all possible inputs; the submission then looks up input in table with 10 000 entries.

J: Jacobi Numbers Problem author: Reinier Schmiermann

Known: Every integer is the sum of five cubes.

Problem author: Reinier Schmiermann

Known: Every integer is the sum of five cubes.

Proof: When n = 6r for integer r we have

$$n = (r+1)^3 + (r-1)^3 + 2(-r)^3$$
.

Possibly adding $(-1)^3$ on the right hand side solves the problem for 6r, 6r-1, 6r+1. The remaining cases (6r+2, 6r+3, 6r+4) are handled similarly. There are many ways of doing this.

Known: Every integer is the sum of five cubes.

Proof: When n = 6r for integer r we have

$$n = (r+1)^3 + (r-1)^3 + 2(-r)^3$$
.

Possibly adding $(-1)^3$ on the right hand side solves the problem for 6r, 6r-1, 6r+1. The remaining cases (6r+2, 6r+3, 6r+4) are handled similarly. There are many ways of doing this.

Open problem: Can every integer be decomposed into four cubes?

Known: Every integer is the sum of five cubes.

Proof: When n = 6r for integer r we have

$$n = (r+1)^3 + (r-1)^3 + 2(-r)^3$$
.

Possibly adding $(-1)^3$ on the right hand side solves the problem for 6r, 6r-1, 6r+1. The remaining cases (6r+2, 6r+3, 6r+4) are handled similarly. There are many ways of doing this.

Open problem: Can every integer be decomposed into four cubes?

Open problem: Can every integer $n \neq 4,5 \mod 9$ be decomposed into three cubes?

$$33 = 8866128975287528^3 + \left(-8778405442862239\right)^3 + \left(-2736111468807040\right)^3$$

Known: Every integer is the sum of five cubes.

Proof: When n = 6r for integer r we have

$$n = (r+1)^3 + (r-1)^3 + 2(-r)^3$$
.

Possibly adding $(-1)^3$ on the right hand side solves the problem for 6r, 6r-1, 6r+1. The remaining cases (6r+2, 6r+3, 6r+4) are handled similarly. There are many ways of doing this.

Open problem: Can every integer be decomposed into four cubes?

Open problem: Can every integer $n \neq 4,5 \mod 9$ be decomposed into three cubes?

$$33 = 8866128975287528^3 + \left(-8778405442862239\right)^3 + \left(-2736111468807040\right)^3$$

Statistics: 66 submissions, 60 accepted