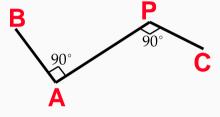
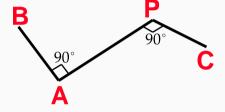
L: Linguistic Labyrinth

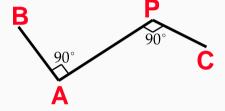
Problem author: Jeroen Op de Beek

Problem: Count number of quadruples *BAPC* such that $\angle BAP = 90^{\circ}$ and $\angle APC = 90^{\circ}$.



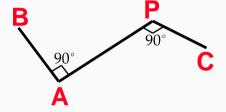


Naive solution: Loop over all quadruples, and check whether the angles are correct.



Naive solution: Loop over all quadruples, and check whether the angles are correct.

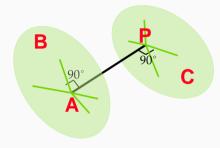
Running time: However, there are n^3 points, so this is $\mathcal{O}(n^{12})$, too slow!



Naive solution: Loop over all quadruples, and check whether the angles are correct.

Running time: However, there are n^3 points, so this is $\mathcal{O}(n^{12})$, too slow!

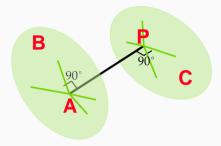
Better solution: Fix A and P. Now the choice of B and C are independent.



Better solution: Loop over all AP pairs, count the number of possible B's and C's, and multiply these counts.

L: Linguistic Labyrinth

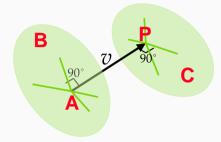
Problem author: Jeroen Op de Beek



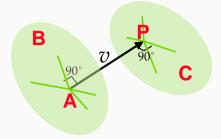
1 1 de

Better solution: Loop over all AP pairs, count the number of possible B's and C's, and multiply these counts.

Running time: Counting B's and C's takes $\mathcal{O}(n^3)$ per AP pair, so the runtime is $\mathcal{O}(n^9)$ in total, still too slow.

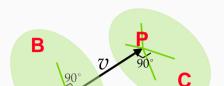


Best solution: Let v be the vector P-A. Then a point B is good if and only if $v \cdot B = v \cdot A$, and likewise C is good if and only if $v \cdot C = v \cdot P$.



Best solution: Let v be the vector P-A. Then a point B is good if and only if $v \cdot B = v \cdot A$, and likewise C is good if and only if $v \cdot C = v \cdot P$.

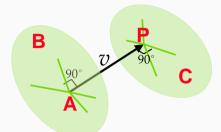
Best solution: For each possible vector v, precompute the number of B's and C's that have a certain inner product. These counts can be stored in an array of size $\mathcal{O}(n^5)$.



Best solution: Let v be the vector P - A. Then a point B is good if and only if $v \cdot B = v \cdot A$, and likewise C is good if and only if $v \cdot C = v \cdot P$.

Best solution: For each possible vector v, precompute the number of B's and C's that have a certain inner product. These counts can be stored in an array of size $\mathcal{O}(n^5)$.

Running time: There are $\mathcal{O}(n^3)$ different v's, so precomputation is $\mathcal{O}(n^6)$. Final complexity: $\mathcal{O}(n^6)$.

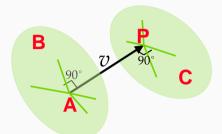


1 1 4

Best solution: Let v be the vector P - A. Then a point B is good if and only if $v \cdot B = v \cdot A$, and likewise C is good if and only if $v \cdot C = v \cdot P$.

Best solution: For each possible vector v, precompute the number of B's and C's that have a certain inner product. These counts can be stored in an array of size $\mathcal{O}(n^5)$.

Running time: There are $\mathcal{O}(n^3)$ different v's, so precomputation is $\mathcal{O}(n^6)$. Final complexity: $\mathcal{O}(n^6)$. **Pitfall:** Using (unordered) maps might result in TLE.



114

Best solution: Let v be the vector P - A. Then a point B is good if and only if $v \cdot B = v \cdot A$, and likewise C is good if and only if $v \cdot C = v \cdot P$.

Best solution: For each possible vector v, precompute the number of B's and C's that have a certain inner product. These counts can be stored in an array of size $\mathcal{O}(n^5)$.

Running time: There are $\mathcal{O}(n^3)$ different v's, so precomputation is $\mathcal{O}(n^6)$. Final complexity: $\mathcal{O}(n^6)$. **Pitfall:** Using (unordered) maps might result in TLE.

Statistics: 32 submissions, 0 accepted, 21 unknown