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A: Accidental Arithmetic
Problem author: Freek Henstra

Problem: Given a number n of d ≤ 1000 digits. Between any two digits, insert a + or a − with
45% chance each. What is the expected value of the resulting expression?

Observation: Since + and − are equally likely, anything after the first + or − has
expected value 0.

Solution: The first term has k digits (1 ≤ k ≤ d − 1) with probability 0.1k−1 · 0.9, and d digits
with probability 0.1d−1. Multiplying by 0.1 just moves the decimal, so if, for example,
n = 1234, the answer is 0.9 · (1 + 1.2 + 1.23) + 1.234 = 4.321.

Running time: O(d2) naively, but can be optimized to O(d), though this was not necessary.
Alternative: The kth digit is multiplied by 0.1k−1 · (1 + 0.9(d − k + 1)). It turns out, summing over

only the first 20 digits suffice to have enough precision.

Statistics: 87 submissions, 43 accepted, 9 unknown
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B: Boggle Sort
Problem author: Thore Husfeldt

Problem: Turn 16 six-sided dice in given order so that the top-facing sides are alphabetically
ordered using as few turns as possible.

Naive solution: There are 616 > 2 · 1012 possible turns; unoptimised brute-force will not work.
Greedy: Greedily turning the dice to the alphabetically earliest letter does not work; it

(helpfully) fails on Sample 1.
Brute-force-y sol.: Among the 4 sideways faces, it is optimal to take the alphabetically earliest face that

still fits. Thus, there are really only 3 different choices per die: keep, turn on smallest
side, turn bottom up. This gives 316 = 43 046 721 choices, which maybe can be
systematically checked.
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B: Boggle Sort
Problem author: Thore Husfeldt

Graph-y solution: Create digraph with vertex set 6 × 16; connect (r , c) to (r ′, c + 1) if the character in
(line l , column c) precedes the character in (line r ′, column c + 1) in the alphabet.
The weight is 0 if r = 1 (dotted), 2 if r = 6 (fat), and 1 otherwise. Connect s to (r , 1)
and (r , 16) to t. Then a minimum-weight s, t-path is the solution.
Optimal solution for Sample 1:

I A Z E E O X S P A C K Y I G F

A P D S S A O H E Q A O G G L Y

L C E R N R F I L J I N E E W E

B D V L O M R E S B A T L T R I

T E A A W S I N U O O U K V I H

Y M N C D H B P T M T D U N U E

Pitfall: There should be no edge from Q to T, even though Q<T (because it should be treated
as QU and U>T). Ignoring this leads (helpfully) to a wrong answer on Sample 1.

Running time: Using Dijkstra’s algorithm, time O(rc log rc) for c dice with r faces. But graph is
acyclic, so actually O(rc).
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B: Boggle Sort
Problem author: Thore Husfeldt

DP: Compute, for 1 ≤ i ≤ 16, and each letter x , the smallest number f (i , x) of turns
needed to bring the first i dice into nondecreasing order such that the ith die shows x .
Then, if x appears on the ith die, we have the general case

f (i , x) = max
y≤x

f (i − 1, y)

where y ranges over all letters appearing on die (i − 1). (Remember the Q=QU pitfall.)

Running time: O(rc) for c dice with r faces.

Statistics: 89 submissions, 35 accepted, 26 unknown
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C: Coherency
Problem author: Thore Husfeldt

Problem: Given n models on a gaming board, represented as
non-overlapping disks with diameter between 25 and
165 mm. Check coherency.

Models are coherent if they can reach each other.
Models are adjacent when ≤ 2 inches apart. For n ≥ 7,
each model must have at least two neighbors, for
coherency.

Naive solution: Check adjacency for all pairs of models in O(n2).
Make a graph of n nodes, and represent adjacency as
undirected edges.
Run your favourite algorithm for finding connected
components, and check degrees, for n ≥ 7.
In total, O(n2). This is too slow, as n ≤ 200000.

Figure 1: Example board
configuration (example 4)
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C: Coherency
Problem author: Thore Husfeldt

Idea: Use a grid of cells of 211 x 211
mm.

Centres of disks are placed into
corresponding cell. This can be
done with a map / dictionary, in
O(n log n) or O(n).

Observation: Disks do not influence disks in
non-adjacent cells (8-adjacency).
(this is why 211 mm is chosen)

Algorithm: For each disk, loop through all 8
adjacent cells, and its own cell, and
check all candidate disks for
adjacency.
DFS, BFS or DSU can be used to
find the connected components.

Time complexity?

Figure 2: Secret testcase

Statistics: 64 submissions, 9 accepted, 34 unknown
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C: Coherency
Problem author: Thore Husfeldt

Time complexity: Time complexity is
O(n × 9 × Max number of disks in one cell)

Roughly O(900 × n)
More precise: Cells need to be Ω(Dmax) mm big, so

O(
( Dmax

Dmin

)2) disks of the minimum diameter
fit inside one cell
Many alternative solutions possible, but based
on similar ideas.

Figure 3: Worst case triangular packing with
smallest diameter.

Statistics: 64 submissions, 9 accepted, 34 unknown
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D: Duo Detection
Problem author: Mike de Vries

Problem: Given n messages, Mi , find two messages which have at least 2 symbols in common.
The total size of all messages is not more than m = 100000.

Observation: Build a bipartite graph with on one side the messages, and on the other the symbols.
Want to find a 4-cycle in the graph.

Naive solution 1: Loop over all pairs of messages, and calculate the intersection of their symbol sets in
O(min(|Mi |, |Mj |)), using hash sets or boolean arrays after using coordinate
compression. Time complexity, roughly: O(n

∑n
i=1 |Mi |)

When n is small, works well, but can be quadratic.
Naive solution 2: Loop over all pairs of symbols in each message. Check if any of these pairs is the

same, by using a hash map. Time complexity: O(
∑n

i=1 |Mi |2) Works well when the
sizes of the messages are small.
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D: Duo Detection
Problem author: Mike de Vries

Reminder: Naive 1: O(min(|Mi |, |Mj |)) over all pairs of messages.
Naive 2: O(

∑n
i=1 |Mi |2)

Solution: The time limit and constraints are generous. Combine the naive solutions in a smart
way to obtain a faster algorithm in the worst case.
Divide messages in big and small messages, based on parameter B. Do casework:

Big-Big Use naive solution 1. Works in O(
∑

i∈Bigs |Mi | m
B ) = O( m2

B )
Small-Big Use naive solution 1. Because of the minimum over the two message lengths, still

O( m2

B )
Small-Small Use naive solution 2, works in O(mB) (worst case is all small messages are equal in

size and < B. )
This handles all the cases, and total complexity is O( m2

B + mB), best when
B = Θ(√m).

Running time: O(m√
m) with a hash map. The algorithm has a considerable constant factor.
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D: Duo Detection
Problem author: Mike de Vries

Bonus: You can get rid of the hash map. This requires in naive solution 2 to order the
computations in a smart way, such that a global boolean array can be used, which is
set and unset for each message. Also requires sorting and coordinate compression
beforehand. Same tricks need to be used in naive solution 1.

Bonus 2: The algorithm can be sped up to O(m
√ m

w ), where w is the word size of the machine
(typically 32 or 64). This can be done with the use of bitsets in naive algorithm 1. The
details are an exercise for the interested reader.

Alternative solution: A time complexity of O( m2

w ) can also get accepted when implemented well. (This is
basically doing bonus 2 without the square-root trick).

Fun fact: Constructions similar to problem F (Faulty Connection) are used in the testdata to
make dense testcases with a impossible answer.

Statistics: 98 submissions, 9 accepted, 40 unknown
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E: Excruciating Elevators
Problem author: Albert Eikelenboom

Problem: Find the fastest possible time to visit floors f1, . . . , fn with optimal starting
configuration of the elevators.

Observation 1: Label the elevators A,B,C,D. We can assume that A starts on floor 0. Indeed, if no
elevator starts on floor 0, we can move each elevator ahead until one does.

Observation 2: Consider a directed graph on the elevators, by drawing an edge from X to Y whenever
X arrives perfectly on time at some point where Y was used most recently. Then from
each used elevator, there must be a path in this graph to elevator A. Otherwise, we
can move all reachable elevators ahead until a new edge emerges.

Conclusion: We can assume there is an edge from B to A, from C to at least one of A or B, and
from D to at least one of A or B or C, giving 6 graphs to consider.

Solution: Iterate all 6 graphs and all n3 possible floors where the perfect transitions take place.
This determines the starting positions of all elevators, from which we can simulate the
corresponding solution.

Running time: For k elevators, with O(kn) time per simulation, the running time is O(k!nk).

Statistics: 16 submissions, 1 accepted, 7 unknown
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F: Faulty Connection
Problem author: Mike de Vries

Problem: Find 600 sets of 30 integers from 1 to 1000 such that no two sets intersect in two or
more integers.

Idea: Any two points on the plane define a unique line, and any two lines have at most one
intersection point. We can assign lines to messages, and points on those lines to
numbers. Since two different lines have at most one intersection point, two messages
have at most one number in common.

Solution: Use the lines in F2
31.
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F: Faulty Connection
Problem author: Mike de Vries

In English: Take a 31 × 31 grid and perform all arithmetic modulo 31 (make it wrap around the
boundaries like in the game of Asteroids). Use lines of the form y = ax + b (with
a, b ∈ {0, 1, ..., 30}).
Assign a line to each message, and a number to each point.

Note: While lines may intersect multiple times when wrapping around, the fact that 31 is
prime means that two different lines will intersect in at most one integer coordinate.

Analysis: There are 31 × 31 ≤ 1000 points, and 31 × 31 ≥ 600 such lines, with 31 ≥ 30 points
each.

Bonus: It is possible to solve the problem for 312 + 31 + 1 = 993 messages of 32 numbers
using only numbers up to 993.
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F: Faulty Connection
Problem author: Mike de Vries

Example: One message may correspond to the red line,
and another to blue. Receiving the points
(2, 28) and (16, 8), the red line can be
reconstructed using modular arithmetic.
The red and blue line (y = 1x + 5) intersect
in exactly one integer point: (7, 12).

Figure 4: Lines corresponding to
y = 3x + 22 (red) and y = 1x + 5 (blue).

Statistics: 42 submissions, 10 accepted, 24 unknown
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G: Garbage In, Garbage Out
Problem author: Jeroen Op de Beek

Problem: Determine whether a text is human-made or LLM-generated.

Human: The text is some concatenation of words from a list.
LLM: The text is randomly generated.

DP Solution: The text is human-made if the first 6, 7, 8, 9, or 10 letters occur in the word list,
and the remainder of the text is also human-made, recursively.

Better: Only check if any word is a prefix: fails with probability at most 5000/266 < 0.002%
per case.
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G: Garbage In, Garbage Out
Problem author: Jeroen Op de Beek

Problem: Determine whether a text is human-made or LLM-generated.
Observation: In a random text, nearly all length-6 substrings (6-mers) are different, since

266 ≈ 300 000 000 ≫ 300 000.

Solution: The text is LLM-generated if all 6-mers occur at most twice, and human otherwise.
Alternative: Count the number of distinct 6-mers instead.

Statistics: 146 submissions, 39 accepted, 49 unknown
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H: Homesick
Problem author: Jonas van der Schaaf

Problem: In an undirected unweighted simple graph, find a shortest walk from v1 back to v1 using
at least one edge and without a digon (i.e., without a subwalk of the form u, v , u).

Idea: Assume there is a valid solution, and look at a node w on the path that is furthest
from v1 (i.e. the node with the greatest depth from v1).

Observation: From this node, two paths to v1 must exist that start out towards different neighbours
of w .

Observation 2: In the optimal solution, the sum of the lengths of these paths must be minimal.
Observation 3: The length of such a path is 1 plus the depth of the neighbour of w the path goes

through.
Observation 4: These paths go to the two neighbours of w that are closest to v1.
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Observation 2: In the optimal solution, the sum of the lengths of these paths must be minimal.
Observation 3: The length of such a path is 1 plus the depth of the neighbour of w the path goes

through.
Observation 4: These paths go to the two neighbours of w that are closest to v1.
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Figure 5: The two cases for optimal solutions given a furthest node.



H: Homesick
Problem author: Jonas van der Schaaf

Solution: Run a BFS and check the optimal path length for all possible deepest nodes:

Mark the depth of each node.
When encounting a node for the second time, the path length is the depth of the node
plus the path length of the second path to this node.
Pick the optimal deepest node (if one exists) and reconstruct the path.

Running time: O(n + m)

Statistics: 123 submissions, 24 accepted, 43 unknown
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I: Intermill Logistics
Problem author: Maarten Sijm

Problem: For i ∈ {1, . . . , n}, the ith windmill can process pi kg wheat in 1 hour; it takes ti hours
to travel to (and from). How fast can you process w kg wheat and get it back?

Easier problem: Given time r , can the wheat be processed in time r or less?
Observation: If you can reach ith windmill in time r (and get back), i.e., if r ≥ 2ti , you can process

pi(r − 2ti) kg wheat there. In total,
n∑

i=1

max
(
0, pi(r − 2ti)

)
.

Solution: We can binary-search for the answer. Travel times are positive integers, so l = 2 is a
lower bound. For an upper bound, processing all wheat on the first machine takes
h = 2t1 + w/p1 ≤ 2 · 109. Can now binary search for the correct value of r with
l ≤ r ≤ h.

Running time: O(n log h).

Statistics: 130 submissions, 43 accepted, 9 unknown



I: Intermill Logistics
Problem author: Maarten Sijm

Problem: For i ∈ {1, . . . , n}, the ith windmill can process pi kg wheat in 1 hour; it takes ti hours
to travel to (and from). How fast can you process w kg wheat and get it back?

Easier problem: Given time r , can the wheat be processed in time r or less?

Observation: If you can reach ith windmill in time r (and get back), i.e., if r ≥ 2ti , you can process
pi(r − 2ti) kg wheat there. In total,

n∑
i=1

max
(
0, pi(r − 2ti)

)
.

Solution: We can binary-search for the answer. Travel times are positive integers, so l = 2 is a
lower bound. For an upper bound, processing all wheat on the first machine takes
h = 2t1 + w/p1 ≤ 2 · 109. Can now binary search for the correct value of r with
l ≤ r ≤ h.

Running time: O(n log h).

Statistics: 130 submissions, 43 accepted, 9 unknown



I: Intermill Logistics
Problem author: Maarten Sijm

Problem: For i ∈ {1, . . . , n}, the ith windmill can process pi kg wheat in 1 hour; it takes ti hours
to travel to (and from). How fast can you process w kg wheat and get it back?

Easier problem: Given time r , can the wheat be processed in time r or less?
Observation: If you can reach ith windmill in time r (and get back), i.e., if r ≥ 2ti , you can process

pi(r − 2ti) kg wheat there. In total,
n∑

i=1

max
(
0, pi(r − 2ti)

)
.

Solution: We can binary-search for the answer. Travel times are positive integers, so l = 2 is a
lower bound. For an upper bound, processing all wheat on the first machine takes
h = 2t1 + w/p1 ≤ 2 · 109. Can now binary search for the correct value of r with
l ≤ r ≤ h.

Running time: O(n log h).

Statistics: 130 submissions, 43 accepted, 9 unknown



I: Intermill Logistics
Problem author: Maarten Sijm

Problem: For i ∈ {1, . . . , n}, the ith windmill can process pi kg wheat in 1 hour; it takes ti hours
to travel to (and from). How fast can you process w kg wheat and get it back?

Easier problem: Given time r , can the wheat be processed in time r or less?
Observation: If you can reach ith windmill in time r (and get back), i.e., if r ≥ 2ti , you can process

pi(r − 2ti) kg wheat there. In total,
n∑

i=1

max
(
0, pi(r − 2ti)

)
.

Solution: We can binary-search for the answer. Travel times are positive integers, so l = 2 is a
lower bound. For an upper bound, processing all wheat on the first machine takes
h = 2t1 + w/p1 ≤ 2 · 109. Can now binary search for the correct value of r with
l ≤ r ≤ h.

Running time: O(n log h).

Statistics: 130 submissions, 43 accepted, 9 unknown



I: Intermill Logistics
Problem author: Maarten Sijm

Problem: For i ∈ {1, . . . , n}, the ith windmill can process pi kg wheat in 1 hour; it takes ti hours
to travel to (and from). How fast can you process w kg wheat and get it back?

Easier problem: Given time r , can the wheat be processed in time r or less?
Observation: If you can reach ith windmill in time r (and get back), i.e., if r ≥ 2ti , you can process

pi(r − 2ti) kg wheat there. In total,
n∑

i=1

max
(
0, pi(r − 2ti)

)
.

Solution: We can binary-search for the answer. Travel times are positive integers, so l = 2 is a
lower bound. For an upper bound, processing all wheat on the first machine takes
h = 2t1 + w/p1 ≤ 2 · 109. Can now binary search for the correct value of r with
l ≤ r ≤ h.

Running time: O(n log h).

Statistics: 130 submissions, 43 accepted, 9 unknown



I: Intermill Logistics
Problem author: Maarten Sijm

Problem: For i ∈ {1, . . . , n}, the ith windmill can process pi kg wheat in 1 hour; it takes ti hours
to travel to (and from). How fast can you process w kg wheat and get it back?

Easier problem: Given time r , can the wheat be processed in time r or less?
Observation: If you can reach ith windmill in time r (and get back), i.e., if r ≥ 2ti , you can process

pi(r − 2ti) kg wheat there. In total,
n∑

i=1

max
(
0, pi(r − 2ti)

)
.

Solution: We can binary-search for the answer. Travel times are positive integers, so l = 2 is a
lower bound. For an upper bound, processing all wheat on the first machine takes
h = 2t1 + w/p1 ≤ 2 · 109. Can now binary search for the correct value of r with
l ≤ r ≤ h.

Running time: O(n log h).

Statistics: 130 submissions, 43 accepted, 9 unknown



I: Intermill Logistics
Problem author: Maarten Sijm

Problem: For i ∈ {1, . . . , n}, the ith windmill can process pi kg wheat in 1 hour; it takes ti hours
to travel to (and from). How fast can you process w kg wheat and get it back?

Greedy solution: Sort the mills such that t1 ≤ · · · ≤ tn.
Claim: There is an optimal solution using exactly mills 1, . . . , i for some i , with the mills

grinding for nonzero time, and either grinding or transporting during the entire
makespan.

Implementation: Getting to/from mill i takes time ti , so during that time the other mills can grind

w ′ =
i−1∑
j=1

pj · (2ti − 2tj) kg wheat.

To grind the remaining wheat (if any), all i machines can work, so the makespan is

2ti + (w − w ′)/(p1 + · · · + pi) .

Running time: Näıve implementation requires O(n2). The sums can be computed cumulatively to
achieve time O(n log n) for n ≥ 2.

Statistics: 130 submissions, 43 accepted, 9 unknown
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J: Jacobi Numbers
Problem author: Reinier Schmiermann

Problem: Write n as a sum of cubes.

Observation: Note that 1 = 13.
Solution: With the given output bounds, it is possible to simply print 1, repeated n times.

Running time: O(n).
Decompose: Decompositions of the numbers between 1 and 9241 into sums of cubes using as few

terms as possible:
singular cubes, like 27 = 33 20
sums of two cubes, like 9241 = 563 + (−55)3 453
sums of three cubes, like 9240 = 563 + (−55)3 + (−1)3 5761
sums of four cubes, like 9239 = 323 + (−25)3 + (−22)3 + 143 3007

Note that the terms can be much larger than the sum, e.g.,

311 = −95293 − 81853 + 82283 + 94973 .

Careful C++ implementation computes this within time bounds.
Constant time: Determine (optimal) decomposition off-line for all possible inputs; the submission then

looks up input in table with 10 000 entries.
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J: Jacobi Numbers
Problem author: Reinier Schmiermann

Known: Every integer is the sum of five cubes.

Proof: When n = 6r for integer r we have

n = (r + 1)3 + (r − 1)3 + 2(−r)3 .

Possibly adding (−1)3 on the right hand side solves the problem for 6r , 6r − 1, 6r + 1.
The remaining cases (6r + 2, 6r + 3, 6r + 4) are handled similarly. There are many
ways of doing this.

Open problem: Can every integer be decomposed into four cubes?
Open problem: Can every integer n ̸= 4, 5 mod 9 be decomposed into three cubes?

33 = 88661289752875283 + (−8778405442862239)3 + (−2736111468807040)3

Statistics: 66 submissions, 60 accepted
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K: Knowing the Clock
Problem author: Wietze Koops

Problem: Given the angles of the hands of a watch, check whether they correspond to a real time.

Observation: For every full circle of the hour hand, the minute hand completes 12 circles.
Solution: Output “yes” if m = h ∗ 12 mod 360, and “no” otherwise.

Running time: O(1).

Statistics: 73 submissions, 60 accepted, 1 unknown
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L: Linguistic Labyrinth
Problem author: Jeroen Op de Beek

Problem: Count number of quadruples BAPC such that ∠BAP = 90◦ and ∠APC = 90◦.

B

A

P

C

Naive solution: Loop over all quadruples, and check whether the angles are correct.
Running time: However, there are n3 points, so this is O(n12), too slow!

Better solution: Fix A and P. Now the choice of B and C are independent.



L: Linguistic Labyrinth
Problem author: Jeroen Op de Beek

Problem: Count number of quadruples BAPC such that ∠BAP = 90◦ and ∠APC = 90◦.

B

A

P

C

Naive solution: Loop over all quadruples, and check whether the angles are correct.
Running time: However, there are n3 points, so this is O(n12), too slow!

Better solution: Fix A and P. Now the choice of B and C are independent.



L: Linguistic Labyrinth
Problem author: Jeroen Op de Beek

Problem: Count number of quadruples BAPC such that ∠BAP = 90◦ and ∠APC = 90◦.

B

A

P

C

Naive solution: Loop over all quadruples, and check whether the angles are correct.

Running time: However, there are n3 points, so this is O(n12), too slow!
Better solution: Fix A and P. Now the choice of B and C are independent.



L: Linguistic Labyrinth
Problem author: Jeroen Op de Beek

Problem: Count number of quadruples BAPC such that ∠BAP = 90◦ and ∠APC = 90◦.

B

A

P

C

Naive solution: Loop over all quadruples, and check whether the angles are correct.
Running time: However, there are n3 points, so this is O(n12), too slow!

Better solution: Fix A and P. Now the choice of B and C are independent.



L: Linguistic Labyrinth
Problem author: Jeroen Op de Beek

Problem: Count number of quadruples BAPC such that ∠BAP = 90◦ and ∠APC = 90◦.

B

A

P

C

Naive solution: Loop over all quadruples, and check whether the angles are correct.
Running time: However, there are n3 points, so this is O(n12), too slow!

Better solution: Fix A and P. Now the choice of B and C are independent.



L: Linguistic Labyrinth
Problem author: Jeroen Op de Beek

B

A

P

C

Better solution: Loop over all AP pairs, count the number of possible B’s and C ’s, and multiply these
counts.

Running time: Counting B’s and C ’s takes O(n3) per AP pair, so the runtime is O(n9) in total, still
too slow.
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Best solution: Let v be the vector P − A. Then a point B is good if and only if v · B = v · A, and
likewise C is good if and only if v · C = v · P.

Best solution: For each possible vector v , precompute the number of B’s and C ’s that have a certain
inner product. These counts can be stored in an array of size O(n5).

Running time: There are O(n3) different v ’s, so precomputation is O(n6). Final complexity: O(n6).
Pitfall: Using (unordered) maps might result in TLE.

Statistics: 32 submissions, 0 accepted, 21 unknown
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Random facts

Jury work

• 945 commits, of which 525 for the main contest (last year: 1138/630)

• 1035 secret test cases (last year: 1192) (86 1
4 per problem!)

• 293 jury + proofreader solutions (last year: 273)
• The minimum1 number of lines the jury needed to solve all problems is

1 + 3 + 7 + 7 + 9 + 2 + 1 + 8 + 3 + 1 + 1 + 9 = 52

On average, 4 1
3 lines per problem (8.8 in BAPC 2024, 4 in preliminaries 2024)
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1With PEP 8 compliant code golfing
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