
ACM International Collegiate Programming Contest

2008 East Central Regional Contest

McMaster University

University of Cincinnati

University of Michigan – Ann Arbor

Youngstown State University

November 1, 2008

Sponsored by IBM

Rules:

1. There are eight questions to be completed in five hours.

2. All questions require you to read the test data from standard input and write results to standard
output. You cannot use files for input or output. Additional input and output specifications can
be found in the General Information Sheet.

3. The allowed programming languages are C, C++ and Java.

4. All programs will be re-compiled prior to testing with the judges’ data.

5. Non-standard libraries cannot be used in your solutions. The Standard Template Library (STL)
and C++ string libraries are allowed. The standard Java API is available, except for those
packages that are deemed dangerous by contestant officials (e.g., that might generate a security
violation).

6. The input to all problems will consist of multiple test cases unless otherwise noted.

7. Programming style is not considered in this contest. You are free to code in whatever style you
prefer. Documentation is not required.

8. All communication with the judges will be handled by the PC2 environment.

9. Judges’ decisions are to be considered final. No cheating will be tolerated.

2008 East Central Regional Contest 1

Problem A: Bordering on Madness

Bob Roberts owns a design business which creates custom artwork for various corporations. One
technique that his company likes to use is to take a simple rectilinear figure (a figure where all sides
meet at 90 or 270 degrees and which contains no holes) and draw one or more rectilinear borders around
them. Each of these borders is drawn so that it is a set distance d away from the previously drawn
border (or the original figure if it is the first border) and then the new area outlined by each border is
painted a unique color. Some examples are shown below (without the coloring of the borders).

The example on the left shows a simple rectilinear figure (grey) with two borders drawn around it. The
one on the right is a more complicated figure; note that the border may become disconnected.

These pieces of art can get quite large, so Bob would like a program which can draw prototypes of the
finished pieces in order to judge how aesthetically pleasing they are (and how much money they will cost
to build). To simplify things, Bob never starts with a figure that results in a border where 2 horizontal
(or vertical) sections intersect, even at a point. This disallows such cases as those shown below:

Input

Input will consist of multiple test cases. The first line of the input file will contain a single integer
indicating the number of test cases. Each test case will consist of two or more lines. The first will
contain three positive integers n, m and d indicating the number of sides of the rectlinear figure, the
number of borders to draw, and the distance between each border, where n ≤ 100 and m ≤ 20.
The remaining lines will contain the n vertices of the figure, each represented by two positive integers
indicating the x and y coordinates. The vertices will be listed in clockwise order starting with the vertex
with the largest y value and (among those vertices) the smallest x value.

Output

For each test case, output three lines: the first will list the case number (as shown in the examples),
the second will contain m integers indicating the length of each border, and the third will contain m

integers indicating the additional area contributed to the artwork by each border. Both of these sets of
numbers should be listed in order, starting from the border nearest the original figure. Lines two and
three should be indented two spaces and labeled as shown in the examples. Separate test cases with a
blank line.

2008 East Central Regional Contest 2

Sample Input

2

6 2 10

20 30 100 30 100 0 0 0 0 10 20 10

10 1 7

20 50 70 50 70 0 0 0 0 30

20 30 20 10 60 10 60 40 20 40

Sample Output

Case 1:

Perimeters: 340 420

Areas: 3000 3800

Case 2:

Perimeters: 380

Areas: 2660

2008 East Central Regional Contest 3

Problem B: Jack of All Trades

Jack Barter is a wheeler-dealer of the highest sort. He’ll trade anything for anything, as long as he
gets a good deal. Recently, he wanted to trade some red agate marbles for some goldfish. Jack’s friend
Amanda was willing to trade him 1 goldfish for 2 red agate marbles. But Jack did some more digging
and found another friend Chuck who was willing to trade him 5 plastic shovels for 3 marbles while
Amanda was willing to trade 1 goldfish for 3 plastic shovels. Jack realized that he could get a better
deal going through Chuck (1.8 marbles per goldfish) than by trading his marbles directly to Amanda
(2 marbles per goldfish).

Jack revels in transactions like these, but he limits the number of other people involved in a chain of
transactions to 9 (otherwise things can get a bit out of hand). Normally Jack would use a little program
he wrote to do all the necessary calculations to find the optimal deal, but he recently traded away his
computer for a fine set of ivory-handled toothpicks. So Jack needs your help.

Input

Input will consist of multiple test cases. The first line of the file will contain an integer n indicating
the number of test cases in the file. Each test case will start with a line containing two strings and
a positive integer m ≤ 50. The first string denotes the items that Jack wants, and the second string
identifies the items Jack is willing to trade. After this will be m lines of the form

a1 name1 a2 name2

indicating that some friend of Jack’s is willing to trade an amount a1 of item name1 for an amount a2

of item name2. (Note this does not imply the friend is also willing to trade a2 of item name2 for a1 of
item name1.) The values of a1 and a2 will be positive and ≤ 20. No person will ever need more than
231 − 1 items to complete a successful trade.

Output

For each test case, output the phrase Case i: (where i is the case number starting at 1) followed by
the best possible ratio that Jack can obtain. Output the ratio using 5 significant digits, rounded. Follow
this by a single space and then the number of ways that Jack could obtain this ratio.

Sample Input

2

goldfish marbles 3

1 goldfish 2 marbles

5 shovels 3 marbles

1 goldfish 3 shovels

this that 4

7 this 2 that

14 this 4 that

7 this 2 theother

1 theother 1 that

Sample Output

Case 1: 1.8000 1

Case 2: 0.28571 3

2008 East Central Regional Contest 4

Problem C: LCR

LCR is a simple game for three or more players. Each player starts with three chips and the object is to
be the last person to have any chips. Starting with Player 1, each person rolls a set of three dice. Each
die has six faces, one face with an L, one with a C, one with an R and three with a dot. For each L
rolled, the player must pass a chip to the player on their left (Player 2 is considered to be to the left of
Player 1); for each R rolled, the player passes a chip to the player on their right; and for each C rolled,
the player puts a chip in a central pile which belongs to no player. No action is taken for any dot that
is rolled. Play continues until only one player has any chips left. In addition, the following rules apply:

1. A player with no chips is not out of the game, since they may later gain chips based on other
players’ rolls.

2. A player with only 1 or 2 chips left only rolls 1 or 2 dice, respectively. A player with no chips left
does not roll but just passes the dice to the next player.

Your job is to simulate this game given a sequence of dice rolls.

Input

Input will consist of multiple test cases. Each test case will consist of one line containing an integer n

(indicating the number of players in the game) and a string (specifying the dice rolls). There will be at
most 10 players in any game, and the string will consist only of the characters ‘L’, ‘C’, ‘R’ and ‘.’. In
some test cases, there may be more dice rolls than are needed (i.e., some player wins the game before
you use all the dice rolls). If there are not enough dice rolls left to complete a turn (for example, only
two dice rolls are left for a player with 3 or more chips) then those dice rolls should be ignored. A value
of n = 0 will indicate end of input.

Output

For each test case, output the phrase “Game i:” on a single line (where i is the case number starting
at 1) followed by a description of the state of the game. This desciption will consist of n+1 lines of the
form

Player 1:c1

Player 2:c2

...

Player n:cn

Center:ct

where c1, c2 ... cn are the number of chips each player has at the time the simulation ended (either
because some player has won or there are no more remaining dice rolls) and ct is the number of chips
in the center pile. In addition, if some player has won, you should append the string “(W)” after their
chip count; otherwise you should append the string “(*)” after the chip count of the player who is the
next to roll. The only blank on any line should come before the game number or the player number.
Use a single blank line to separate test cases.

2008 East Central Regional Contest 5

Sample Input

3 LR.CCR.L.RLLLCLR.LL..R...CLR.

5 RL....C.L

0

Sample Output

Game 1:

Player 1:0

Player 2:0

Player 3:6(W)

Center:3

Game 2:

Player 1:1

Player 2:4

Player 3:1

Player 4:4(*)

Player 5:4

Center:1

2008 East Central Regional Contest 6

Problem D: Party Party Party

Emma has just graduated high school and it is the custom for the new graduates to throw parties for
themselves and invite everyone in school to attend. Naturally, Emma wishes to attend as many parties
as possible. This is not such a problem on a weekday since usually there are only two or three parties
in the evening. But, Saturdays are packed! Typically some parties start at 8 AM (breakfast is served)
while others might end at midnight (much to the annoyance of the neighbors). Emma naturally wants
to know how many parties she can attend.

Each party has a starting and stopping time, which are on the hour. These are listed via a 24-hour
clock. For example, a party might start at 10 AM (10) and end at 2 PM (14). The earliest a party can
start is 8 AM (8) and the latest it can end is midnight (24). In order not to be rude, Emma stays at
each party at least one half hour and will consider traveling time between parties to be instantaneous.
If there are times during the day when there are no parties to attend, she’ll simply go home and rest.

Input

There will be multiple test cases. Each test case starts with a line containing an integer p (≤ 100)
indicating the number of parties on the given day. (A value of p = 0 indicates end of input.) The
following p lines are each of the form s e, both integers where 8 ≤ s < e ≤ 24, indicating a party that
starts at time s and ends at time e. Note there may be multiple parties with the same starting and
ending time.

Output

For each input set output a line of the form

On day d Emma can attend as many as n parties.

where you determine the value of n and d is the number of the test case starting at 1.

Sample Input

8

12 13

13 14

12 13

9 10

9 10

12 13

12 14

9 11

3

14 15

14 15

14 15

0

Sample Output

On day 1 Emma can attend as many as 7 parties.

On day 2 Emma can attend as many as 2 parties.

2008 East Central Regional Contest 7

Problem E: Su-Su-Sudoku

By now, everyone has played Sudoku: you’re given a 9-by-9 grid of boxes which you are to fill in with
the digits 1 through 9 so that 1) every row has all nine digits, 2) every column has all nine digits, and
3) all nine 3-by-3 subgrids have all nine digits. To start the game you are given a partially completed
grid and are asked to fill in the remainder of the boxes. One such puzzle is shown below.

4 8 1 2 5 3 6 9 7

2 6 7 9 4 8 1 5

5 3 9 6 7 1 2 4

6 5 4 3 8 9 7 1 2

9 8 7 4 5 6 3

1 7 3 5 6 2 8 4 9

7 2 1 3 6 9 5 8

3 1 5 8 9 7 4 2 6

8 9 6 4 2 5 3 7 1

In this problem, you will be given Sudoku grids which you have nearly completed; indeed you’ve filled
in every box except five. You are asked to complete the grid, or determine that it’s impossible. (You
might have already made an error!)

Input

The first line of input will contain a positive integer indicating the number of test cases to follow. Each
test case will be a nearly completed Sudoku grid consisting of 9 lines, each containing 9 characters from
the set of digits 0 through 9. There will be exactly five 0’s in each test case, indicating the five unfilled
boxes.

Output

Output for each test case should be either

Could not complete this grid.

if it is impossible to complete the grid according to the rules of the game, or the completed grid, in the
form given below. (There are no blank spaces in the output.) If there is a way to complete the grid, it
will be unique. Separate test cases with a blank line.

2008 East Central Regional Contest 8

Sample Input

2

481253697

267948105

539671204

654389712

908704563

173562849

702136958

315897426

896425371

481253697

267948105

539671284

654289710

908704562

173562849

702136958

315897426

896425371

Sample Output

481253697

267948135

539671284

654389712

928714563

173562849

742136958

315897426

896425371

Could not complete this grid.

2008 East Central Regional Contest 9

Problem F: Tanks a Lot

Imagine you have a car with a very large gas tank - large enough to hold whatever amount you need.
You are traveling on a circular route on which there are a number of gas stations. The total gas in all
the stations is exactly the amount it takes to travel around the circuit once. When you arrive at a gas
station, you add all of that station’s gas to your tank. Starting with an empty tank, it turns out there
is at least one station to start, and a direction (clockwise or counter-clockwise) where you can make it
around the circuit. (On the way home, you might ponder why this is the case - but trust us, it is.)

Given the distance around the circuit, the locations of the gas stations, and the number of miles your
car could go using just the gas at each station, find all the stations and directions you can start at and
make it around the circuit.

Input

There will be a sequence of test cases. Each test case begins with a line containing two positive integers
c and s, representing the total circumference, in miles, of the circle and the total number of gas stations.
Following this are s pairs of integers t and m. In each pair, t is an integer between 0 and c−1 measuring
the clockwise location (from some arbitrary fixed point on the circle) around the circumference of one
of the gas stations and m is the number of miles that can be driven using all of the gas at the station.
All of the locations are distinct and the maximum value of c is 100,000. The last test case is followed
by a pair of 0’s.

Output

For each test case, print the test case number (in the format shown in the example below) followed by a
list of pairs of values in the form i d, where i is the gas station location and d is either C, CC, or CCC,
indicating that, when starting with an empty tank, it is possible to drive from location i around in a
clockwise (C) direction, counterclockwise (CC) direction, or either direction (CCC), returning to location
i. List the stations in order of increasing location.

Sample Input

10 4

2 3 4 3 6 1 9 3

5 5

0 1 4 1 2 1 3 1 1 1

0 0

Sample Output

Case 1: 2 C 4 CC 9 C

Case 2: 0 CCC 1 CCC 2 CCC 3 CCC 4 CCC

2008 East Central Regional Contest 10

Problem G: The Worm Turns

Winston the Worm just woke up in a fresh rectangular patch of earth. The rectangular patch is divided
into cells, and each cell contains either food or a rock. Winston wanders aimlessly for a while until he
gets hungry; then he immediately eats the food in his cell, chooses one of the four directions (north,
south, east, or west) and crawls in a straight line for as long as he can see food in the cell in front of
him. If he sees a rock directly ahead of him, or sees a cell where he has already eaten the food, or
sees an edge of the rectangular patch, he turns left or right and once again travels as far as he can in a
straight line, eating food. He never revisits a cell. After some time he reaches a point where he can go
no further so Winston stops, burps and takes a nap.

For instance, suppose Winston wakes up in the following patch of earth (X’s represent stones, all other
cells contain food):

0 1 2 3 4
0 X
1
2
3 X X
4

If Winston starts eating in row 0, column 3, he might pursue the following path (numbers represent
order of visitation):

0 1 2 3 4
0 4 3 2 1 X
1 5 18 17 16 15
2 6 19 20 21 14
3 7 X X 22 13
4 8 9 10 11 12

In this case, he chose his path very wisely: every piece of food got eaten. Your task is to help Winston
determine where he should begin eating so that his path will visit as many food cells as possible.

Input

Input will consist of multiple test cases. Each test case begins with two positive integers, m and n,
defining the number of rows and columns of the patch of earth. Rows and columns are numbered
starting at 0, as in the figures above. Following these is a non-negative integer r indicating the number
of rocks, followed by a list of 2r integers denoting the row and column number of each rock. The last
test case is followed by a pair of zeros. This should not be processed. The value m × n will not exceed
625.

Output

For each test case, print the test case number (beginning with 1), followed by four values:

amount row column direction

where amount is the maximum number of pieces of food that Winston is able to eat, (row, column)

is the starting location of a path that enables Winston to consume this much food, and direction is

2008 East Central Regional Contest 11

one of E, N, S, W, indicating the initial direction in which Winston starts to move along this path. If
there is more than one starting location, choose the one that is lexicographically least in terms of row
and column numbers. If there are optimal paths with the same starting location and different starting
directions, choose the first valid one in the list E, N, S, W. Assume there is always at least one piece
of food adjacent to Winston’s initial position.

Sample Input

5 5

3

0 4 3 1 3 2

0 0

Sample Output

Case 1: 22 0 3 W

2008 East Central Regional Contest 12

Problem H: You’ll be Working on the Railroad

Congratulations! Your county has just won a state grant to install a rail system between the two largest
towns in the county — Acmar and Ibmar. This rail system will be installed in sections, each section
connecting two different towns in the county, with the first section starting at Acmar and the last ending
at Ibmar. The provisions of the grant specify that the state will pay for the two largest sections of the
rail system, and the county will pay for the rest (if the rail system consists of only two sections, the
state will pay for just the larger section; if the rail system consists of only one section, the state will pay
nothing). The state is no fool and will only consider simple paths; that is, paths where you visit a town
no more than once. It is your job, as a recently elected county manager, to determine how to build the
rail system so that the county pays as little as possible. You have at your disposal estimates for the cost
of connecting various pairs of cities in the county, but you’re short one very important requirement —
the brains to solve this problem. Fortunately, the lackeys in the computing services division will come
up with something.

Input

Input will contain multiple test cases. Each case will start with a line containing a single positive integer
n ≤ 50, indicating the number of railway section estimates. (There may not be estimates for tracks
between all pairs of towns.) Following this will be n lines each containing one estimate. Each estimate
will consist of three integers s e c, where s and e are the starting and ending towns and c is the cost
estimate between them. (Acmar will always be town 0 and Ibmar will always be town 1. The remaining
towns will be numbered using consecutive numbers.) The costs will be symmetric, i.e., the cost to build
a railway section from town s to town e is the same as the cost to go from town e to town s, and costs
will always be positive and no greater than 1000. It will always be possible to somehow travel from
Acmar to Ibmar by rail using these sections. A value of n = 0 will signal the end of input.

Output

For each test case, output a single line of the form

c1 c2 ... cm cost

where each ci is a city on the cheapest path and cost is the cost to the county (note c1 will always be 0
and cm will always be 1 and ci and ci+1 are connected on the path). In case of a tie, print the path with
the shortest number of sections; if there is still a tie, pick the path that comes first lexicographically.

Sample Input

7

0 2 10

0 3 6

2 4 5

3 4 3

3 5 4

4 1 7

5 1 8

0

Sample Output

0 3 4 1 3

