
2004 Mid-Atlantic Regional Programming Contest
Welcome to the 2004 Programming Contest. Before you start the contest, please be aware of

the following notes:

1. There are eight (8) problems in the packet, using letters A–H. These problems are NOT
sorted by difficulty. As a team’s solution is judged correct, the team will be awarded a
balloon. The balloon colors are as follows:

Problem Problem Name Balloon Color

A Filling Out the Team Blue
B Auctions R Us Purple
C GHOST Pink
D Doggone Moles Green
E Line of Sight Gold
F Tangled in Cables Orange

G
All Roads Lead to

Albuquerque, er, Rome
Red

H Balanced Budget Initiative Silver

2. During the contest, a variety of reference materials for the supported compilers, libraries,
and editors are available at

http://midatl.cs.vt.edu/contest/

The contest scoreboard is also accessible through that URL. Note that during the contest you
may only access web pages through that link.

3. All solutions must read from standard input and write to standard output. In C this is
scanf/printf, in C++ this is cin/cout, and in Java this is System.in/System.out. The judges
will ignore all output sent to standard error. (You may wish to use standard error to output
debugging information.) From your workstation you may test your program with an input
file by redirecting input from a file:

program < file.in

4. Solutions for problems submitted for judging are called runs. Each run will be judged. Runs
for each particular problem will be judged in the order they are received. However, it is
possible that runs for different problems may be judged out of order. For example, you
may submit a run for B followed by a run for C, but receive the response for C first. DO
NOT request clarifications on when a response will be returned. If you have not received
a response for a run within 60 minutes of submitting it,you may have a runner ask the
site judge to determine the cause of the delay. Under no circumstances should you ever
submit a clarification request about a submission for which you have not received a
judgment.

The judges will respond to your submission with one of the following responses. In the event
that more than one response is applicable, the judges may respond with any of the applicable
responses.

Nov. 13, 2004 2004 Mid-Atlantic Regional Programming Contest Page 1 of ??

Response Explanation

Correct Your submission has been judged correct.
Incorrect Output Your submission generated output that is not correct.

Output Format Error Your submission’s output is not in the correct format or is
misspelled.

Incomplete Output Your submission did not produce all of the required output.
Excessive Output Your submission generated output in addition to or instead

of what is required.
Compilation Error Your submission failed to compile.
Run-Time Error Your submission experienced a run-time error.

Time-Limit Exceeded Your submission did not solve the judges’ test data within 30
seconds.

5. A team’s score is based on the number of problems they solve and penalty points, which
reflect the amount of time and number of incorrect submissions made before the problem is
solved. For each problem solved correctly, penalty points are charged equal to the time at
which the problem was solved plus 20 minutes for each incorrect submission. No penalty
points are added for problems that are never solved. Teams are ranked first by the number of
problems solved and then by the fewest penalty points.

6. This problem set contains sample input and output for each problem. However, you may be
assured that the judges will test your submission against several other more complex datasets,
which will not be revealed until after the contest. Your major challenge is designing other
input sets for yourself so that you may fully test your program before submitting your run.
Should you receive an incorrect judgment, you should consider what other datasets you could
design to further evaluate your program.

7. In the event that you feel a problem statement is ambiguous, you may request a clarification.
Read the problem carefully before requesting a clarification. If the judges believe that the
problem statement is sufficiently clear, you will receive the response, “The problem state-
ment is sufficient; no clarification is necessary.” If you receive this response, you should read
the problem description more carefully. If you still feel there is an ambiguity, you will have
to be more specific or descriptive of the ambiguity you have found. If the problem statement
is ambiguous in specifying the correct output for a particular input, please include that input
data in the clarification request.

Additionally, you may submit a clarification request asking for the correct output for input
you provide. The judges will seek to respond to these requests with the correct output. These
clarification requests will be answered only when no clarifications regarding ambiguity are
pending. The judges reserve the right to suspend responding to these requests during the
contest. If the provided input does not meet the specifications of the problem, or contains
numbers that are not representable using the available programming languages, the response
“illegal input” will be returned.

If a clarification, including output for a given input, is issued during the contest, it will be
broadcast to all teams.

Nov. 13, 2004 2004 Mid-Atlantic Regional Programming Contest Page 2 of ??

8. The submission of abusive programs or clarification requests to the judges will be considered
grounds for immediate disqualification.

9. All lines end with a newline character (\n , endl , or println()).

10. All input sets used by the judges will follow the input format specification found in the
problem description.

11. Unless otherwise specified, all numbers will appear in the input and should be presented
in the output beginning with the- if negative, followed immediately by 1 or more decimal
digits. If it is a real number, then the decimal point appears, followed by any number of
decimal digits (for output of real numbers the number of decimal digits will be specified in
the problem description as the “precision”). All real numbers printed to a given precision
should be rounded to the nearest value.

In simpler terms, neither scientific notation nor commas will be used for numbers, and you
should ensure you use a printing technique that rounds to the appropriate precision.

12. Good luck, and HAVE FUN!!!

Nov. 13, 2004 2004 Mid-Atlantic Regional Programming Contest Page 3 of ??

Problem A: Filling Out the Team

Problem A: Filling Out the Team

Over the years, the people of the great city of Pittsburgh have repeatedly demonstrated a col-
lective expertise at football second to none. Recently a spy has discovered the true source of the
city’s football power—a wizard known only as “Myron,” who is infallible at selecting the proper
position at which each player will excel.

Now that you know the source of Pittsburgh’s wisdom, you are determined to provide your
school’s football team with a computer program that matches the wisdom of “Myron.” You have
consulted with the best football minds you can find, and they have dispensed their wisdom on the
slowest speed, minimum weight, and minimum strength required to play each position.

Position Slow. Speed Min. Weight Min. Strength
Wide Receiver 4.5 150 200

Lineman 6.0 300 500
Quarterback 5.0 200 300

Using this knowledge, you will develop a program that reads in several players physical at-
tributes and outputs what position(s) they are able to play.

Input

Each line of the input file will list the attributes for one player:

<speed> <weight> <strength>

Each number will be a real-valued number. The file will end with a line reading “0 0 0”

Output

For each player, you will output one line listing the positions that player can play. A player can
play a position if each of their attributes is greater or equal to the minimum for weight and strength,
and less than or equal to the slowest speed. If a player can play multiple positions, output them
in the order listed above, separated by whitespace. You may leave an extra space at the end of the
line. If a player can play no positions, write “No positions” on the line.

Nov. 13, 2004 2004 Mid-Atlantic Regional Programming Contest Page 4 of ??

Problem A: Filling Out the Team

Example

Input:

4.4 180 200
5.5 350 700
4.4 205 350
5.2 210 500
0 0 0

Output:

Wide Receiver
Lineman
Wide Receiver Quarterback
No positions

Nov. 13, 2004 2004 Mid-Atlantic Regional Programming Contest Page 5 of ??

Problem B: Auctions R Us

Problem B: Auctions R Us

Having run into trouble with current online auctions and buyers that win auctions and then back
out, you decide to open a new enterprise that has the bidders deposit funds before they may bid on
any item. If they win an auction, the amount they bid is immediately (that second!) deducted from
their account. (The problem of sellers that don’t deliver the items will be left for another day.)

You must write a program to implement the rules of this auction. You will be auctioning off a
number of items, each of which will have a reserve price that must be met. Each of your bidders
will deposit funds with you, and you must match these funds with items they successfully bid for.
You will write a program that tracks the auctions during a single day and outputs the results of
each auction.

Auction Rules

You are guaranteed:
• No two items will have the same end time.
• No two bids will have the same bid time.
• No price, bid, or account balance will be negative.

Bidder numbers and item numbers are unique within each category, but a bidder may have the
same number as an item. Bidder and item numbers are not necessarily assigned sequentially.

An auction is won by the highest bid that:
• arrives no later than the second the auction ends.
• is greater than or equal to the minimum price for the item
• has at least the bid amount remaining in the bidder’s account at the instant the auction ends.

Input

There are 3 sections in the data file, describing the items available for bid, the registered bidders,
and the bids made during the auction.

Items
• A single line containing the number of items,i
• i lines, one for each item of the form:

<item number> <minimum price> <auction end time>

Item numberis a non-negative integer,minimum priceis specified to the penny (0.01), and
auction end timeis in 24 hour format of the form XX:YY:ZZ where XX is in hours from 00
to 23, YY is in minutes from 00 to 59, and ZZ is in seconds from 00 to 59.

Bidders
• A single line with the number of bidders registered,j
• j lines of bidder data of the form:

<bidder number> <account balance>

Wherebidder numberis a non-negative integer andaccount balanceis specified to the penny
(0.01).

Nov. 13, 2004 2004 Mid-Atlantic Regional Programming Contest Page 6 of ??

Problem B: Auctions R Us

Bids
• A single line with the number of bids received,k
• k lines of bid data of the form:

<item # being bid on> <bidder number> <bid amount> <bid time>

where all fields are formatted as described above.

Output

Output one line for each item being auctioned, in order of their auction finish time, listing

Item <item number> Bidder <bidder number> Price <winning bid>

If there is not a winning bid for an item, for that item output

Item <item number> Reserve not met.

Example

Input:

2
1 5.00 05:06:27
2 25.00 15:30:11
2
11 37.37
22 55.55
3
1 11 60.00 04:03:01
2 11 26.00 00:18:03
2 22 27.00 09:03:05

Output:

Item 1 Reserve not met.
Item 2 Bidder 22 Price 27.00

Nov. 13, 2004 2004 Mid-Atlantic Regional Programming Contest Page 7 of ??

Problem C: GHOST

Problem C: GHOST

GHOST is a spelling game played by bored school kids on long car/bus rides. The purpose
of the game it to accumulate letters that spell some word without ever actually finishing a word.
Before the game begins, players agree on the order in which they will play. Plays proceed from
one player to the next, returning then to the first player until the game is completed. Each player
must, in turn, 1) extend the current “word”, 2) bluff, or 3) challenge.

1. The most common play is to extend the current sequence of letters by adding a single letter,
so that the resulting sequence of letters forms the beginning of some word. For example, the
first player might call “P”, thinking (secretly) of the word “part”. The second player might
call “L”, thinking of the word “play”. The third player might call “E”, thinking of the word
“please”.

A player loses if they actually complete a valid English word of 4 or more letters. For
example, if there were only three players, after “PLE” the first player might try to extend the
word by calling “A”, thinking of the word “plead”. This would, however, be a losing play
because “plea” is a valid word.

2. A player who cannot think of a valid letter to extend the current sequence may opt to “bluff”
by calling out an arbitrary letter, hoping that the next player will not notice.

3. Finally, if a player believes, on his turn, that the preceding player was bluffing or that the
preceding player completed a word, he may challenge the preceding player. If all players
agree that the current sequence completes a word (of at least 4 letters), the preceding player
loses. If the preceding player cannot name a word that can be formed from the current
sequence, the preceding player loses. If the current sequence is not a valid word and the
preceding player is able to name a possible word beginning with the sequence, the challenger
loses.

Write a program to serve as a player in a game of GHOST. Note that a skillful player will,
on her turn, not only worry about coming up with a legal extension to the current sequence of
letters, but will also think about all the words that could be formed from an extension and whether,
comparing the number of letters in those words to the number of players, consider whether a
possible extension could result in her getting stuck on a future turn with no legal extension that
does not end a word, thus losing the game.

Input

The input for this game will consist of a sequence of one or more scenarios.
Each scenario contains the following:
The first line of the scenario will contain a single integer indicating the number of players in the

game. This value will be at least 2 for a valid scenario. The end of the input file will be indicated
by a value less than 2 for this number.

Following this will be a list of words to serve as the program’s dictionary/vocabulary for the
scenario. Each word will appear on a separate line, with no leading, trailing, or internal whitespace.
Each word will consist only of the characters{a–z}. The end of this list of words will be signaled
by an empty line.

Nov. 13, 2004 2004 Mid-Atlantic Regional Programming Contest Page 8 of ??

Problem C: GHOST

Following that empty line, the final input line of the scenario will contain the current sequence
of letters, again with no leading or trailing spaces. This sequence may be empty if the computer
player is the first player. The sequence may also contain more letters than the number of players,
indicating that all players (including the computer player) have taken one or more turns.

Output

Your program will produce a single line of output for each scenario.
That line of output will consist of the current sequence of letters from the input, followed by a

single blank, followed by:

1. The word “Challenge” if the current sequence is a complete word in the vocabulary list or is
not a prefix of any word in the vocabulary list, or

2. A single character representing a valid extension if it can find some word formed with that
extension such that this extension does not complete a word and, if all other players continue
to spell out that same word, neither that word nor any shorter word would be completed on
the computer player’s turn.

If multiple such extensions are possible, and if any extensions guarantee a different player
will lose, the program should select one of those.

3. The word “Bluff” if the only possible extensions would lead to a loss by the computer player.

Nov. 13, 2004 2004 Mid-Atlantic Regional Programming Contest Page 9 of ??

Problem C: GHOST

Example

Input:

3
area
arched
apple
apply
applied

ar
2
area
arch
apple
apply
applied
applying

a
2
area

ax
0

Output:

ar e
a p
ax Challenge

Nov. 13, 2004 2004 Mid-Atlantic Regional Programming Contest Page 10 of ??

Problem D: Doggone Moles

Problem D: Doggone Moles

A mole has pockmarked our yard with a rectangular grid of tunnels. Infuriated at the damage,
we have released a number of terriers into the yard to catch the mole. The terriers have very
sensitive hearing and, if they come close enough to the mole, can dig very quickly and catch the
rodent. Unfortunately, the mole is very sensitive to the vibrations caused by the footsteps of the
terriers, and will actively try to evade them.

We have no idea where the mole was when the terriers were released. But we have watched the
terriers move about the yard for some time, and the mole has not been caught. Write a program
that deduces where the mole might be, given our observations.

At the time we began recording our observations, we also know that the mole was not in a
position underneath or adjacent to a terrier. In each subsequent time interval, the terriers may have
remained in the same position or may have moved one space horizontally or vertically. Then the
mole may have done the same. If, before or after any of these moves, by terriers or by the mole, a
terrier were directly over the mole or in a position adjacent (horizontally or vertically) to the mole,
the mole would have been caught.

Write a program that accepts a description of the yard and of the location of the terriers within
it over a period of time. The program should print a list of the possible positions of the mole at the
end of that time.

Input

The input for this program consists of one or more observation sets.
Each observation set is constructed as follows:

• The first line contains 4 integers
<W> <L> <N> <T>

W andL are positive integers representing the width (x dimension) and length (y dimension)
of the yard.N is the non-negative number of terriers.T is the positive number of time
intervals over which we have conducted observations.

• The remainder of the observation set contains one line per terrier. Each line contains 2T
integers denoting the (x,y) coordinates of the terrier at each of the T time steps, expressed
separated by whitespace without parentheses or commas. Possible coordinates range from
(0, 0) in one corner of the yard to(W, L) at the opposite corner.

The end of input is signaled by a line containing 4 zeros in place of a valid(W, L, N, T) set.

Output

For each observation set, your program should print a line ”Observation Set ” followed by the
integer number of the set (starting at 1).

If there is at least one possible location for the mole, then, beginning on the next line, print all
the possible locations of the mole as(x, y) pairs, 8 pairs per output line (except possibly fewer for
the final line of output for the set). There should be no leading blanks before the first pair on a line
nor trailing blanks after the final pair on the line, but successive pairs on the same line should be
separated by exactly one blank. A pair is printed in the format “(x, y)” with no internal blanks.
Pairs should be printed in an order such that pairs with lower values ofy come before any pairs

Nov. 13, 2004 2004 Mid-Atlantic Regional Programming Contest Page 11 of ??

Problem D: Doggone Moles

with higher values ofy and, for pairs with the samey value, pairs with lower values ofx come
before pairs with higher values ofx.

If there are no possible locations for the mole, then the second line of output for the observation
set will consist of the message “No possible locations”.

Example

Input:

1 4 2 3
1 1 1 2 1 3
0 1 0 2 0 3
6 2 2 4
3 0 3 1 4 1 4 0
3 1 3 1 4 1 3 1
0 0 0 0

This input set may be visualized as:

�����

�����

�����

����� 		�

�����

���

�����

�����

����������

(0,0)

(6,2)

path of terrier 1

path of terrier 2

Observation Set 1 Observation Set 2

�����

����� �����

��������

!!�"" ##�$$

%%�&&''�((

))�** ++�,,

(0,0)

(1,4)

--�..

//�00

11�22

33�44

55�66

77�88

99�::

;;�<<

==�>>

Output:

Observation Set 1
No possible locations
Observation Set 2
(0,0) (1,0) (2,0) (6,0) (0,1) (1,1) (5,1) (6,1)
(0,2) (1,2) (2,2) (4,2) (5,2) (6,2)

Nov. 13, 2004 2004 Mid-Atlantic Regional Programming Contest Page 12 of ??

Problem E: Line of Sight

Problem E: Line of Sight

An architect is very proud of his new home and wants to be sure it can be seen by people
passing by his property line along the street. The property contains various trees, shrubs, hedges,
and other obstructions that may block the view. For the purpose of this problem, model the house,
property line, and obstructions as straight lines parallel to thex axis:

Property Line

Hedge
Tree

House

To satisfy the architect’s need to know how visible the house is, you must write a program
that accepts as input the locations of the house, property line, and surrounding obstructions and
calculates the longest continuous portion of the property line from which the entire house can be
seen, with no part blocked by any obstruction.

Input

Because each object is a line, it is represented in the input file with a left and rightx coordinate
followed by a singley coordinate:

<x1> <x2> <y>

Wherex1, x2, andy are non-negative real numbers.x1 < x2
An input file can describe the architecture and landscape of multiple houses. For each house,

the first line will have the coordinates of the house. The second line will contain the coordinates
of the property line. The third line will have a single integer that represents the number of obstruc-
tions, and the following lines will have the coordinates of the obstructions, one per line.

Following the final house, a line “0 0 0” will end the file.
For each house, the house will be above the property line (house y> property line y). No

obstruction will overlap with the house or property line, e.g. ifobstacle y= house y, you are
guaranteed the entire rangeobstacle[x1, x2] does not intersect withhouse[x1, x2].

Output

For each house, your program should print a line containing the length of the longest continuous
segment of the property line from which the entire house can be to a precision of 2 decimal places.
If there is no section of the property line where the entire house can be seen, print “No View”.

Nov. 13, 2004 2004 Mid-Atlantic Regional Programming Contest Page 13 of ??

Problem E: Line of Sight

Example

Input:

2 6 6
0 15 0
3
1 2 1
3 4 1
12 13 1
1 5 5
0 10 0
1
0 15 1
0 0 0

Output:

8.80
No View

Nov. 13, 2004 2004 Mid-Atlantic Regional Programming Contest Page 14 of ??

Problem F: Tangled in Cables

Problem F: Tangled in Cables

You are the owner of SmallCableCo and have purchased the franchise rights for a small town.
Unfortunately, you lack enough funds to start your business properly and are relying on parts you
have found in an old warehouse you bought. Among your finds is a single spool of cable and a lot
of connectors. You want to figure out whether you have enough cable to connect every house in
town. You have a map of town with the distances for all the paths you may use to run your cable
between the houses. You want to calculate the shortest length of cable you must have to connect
all of the houses together.

Input

Only one town will be given in an input file.
• The first line gives the length of cable on the spool as a real number.
• The second line contains the number of houses,N
• The nextN lines give the name of each house’s owner. Each name consists of up to 20

characters{a–z,A–Z,0–9} and contains no whitespace or punctuation.
• Next line:M , number of paths between houses
• nextM lines in the form

<house name A> <house name B> <distance>

Where the two house names match two different names in the list above and the distance is a
positive real number. There will not be two paths between the same pair of houses.

Output

The output will consist of a single line. If there is not enough cable to connect all of the houses in
the town, output

Not enough cable

If there is enough cable, then output

Need <X> miles of cable

PrintX to the nearest tenth of a mile (0.1).

Nov. 13, 2004 2004 Mid-Atlantic Regional Programming Contest Page 15 of ??

Problem F: Tangled in Cables

Example

Input:

100.0
4
Jones
Smiths
Howards
Wangs
5
Jones Smiths 2.0
Jones Howards 4.2
Jones Wangs 6.7
Howards Wangs 4.0
Smiths Wangs 10.0

Output:

Need 10.2 miles of cable

Nov. 13, 2004 2004 Mid-Atlantic Regional Programming Contest Page 16 of ??

Problem G: All Roads Lead to Albuquerque, er, Rome

Problem G: All Roads Lead to Albuquerque, er, Rome

A friend of mine has an unusual method of driving around the city, which he says helps reduce
the number of routes he must memorize in order to not get lost. He picks two locations as hubs
(H1 andH2), assigns all other locations to eitherH1 or H2, and then learns the shortest path from
all locations to and from their associated hub. If he then wishes to travel fromA to B, he goes
from A to the hub associated withA, then to the hub associated withB (if B is associated with
the other hub thanA), then toB. My friend always travels to the hubs, even if that means that he
visits his destination two or three times.

Your program should analyze a city (a set of nodes and edge lengths) and pick the best pair of
hubs and assignment of nodes to hubs. The best configuration will be the configuration that mini-
mizes the average distance of the trips between all pairs of nodes. If more than one configuration
yields the lowest average, your program can output any of them.

Input

The input contains several test cases. The first line of the input file contains a single integer
indicating the number of test cases.

The input for each test case starts with a single line

<n> <m>

2 ≤ n ≤ 50 and1 ≤ m ≤ 1000. n is the number of locations in the city andm is the number
of road segments that directly connect two locations in the city. There may be more than one road
segment between a pair of locations, and a road segment may start and end at the same location.

Each of the nextm lines will describe the road segment between two locations and will contain
three integers

<a> <d>

1 ≤ a ≤ n, 1 ≤ b ≤ n, and1 ≤ d ≤ 1000. a andb are locations that describe the ends of the
road segment andd is the distance required to travel froma to b (or b to a) along the road segment.
There are no one-way roads.

There will always exist a path between any two locations along the given road segments.

Output

For each test case, output an optimal choice of hubs and assignment of locations to hubs by out-
putting a line containingn integers, separated by spaces. If thei-th location is a hub, thei-th
integer should be zero. If thei-th location is not a hub, thei-th integer should give the number of
thei-th location’s hub (1 ton inclusive).

Nov. 13, 2004 2004 Mid-Atlantic Regional Programming Contest Page 17 of ??

Problem G: All Roads Lead to Albuquerque, er, Rome

Example

Input:

3
3 2
1 2 40
2 3 20
7 10
1 1 1
1 2 2
2 4 2
4 3 2
3 1 2
2 3 5
3 7 10
7 6 1
5 6 1
4 5 1
16 15
1 8 1
2 8 1
3 8 1
4 9 1
5 9 1
6 9 1
7 8 1
8 9 3
9 10 1
8 11 1
8 12 1
8 13 1
9 14 1
9 15 1
9 16 1

Output:

0 0 2
4 4 4 0 0 5 5
8 8 8 9 9 9 8 0 0 9 8 8 8 9 9 9

(for the first test case,2 0 0 is also valid output)

Nov. 13, 2004 2004 Mid-Atlantic Regional Programming Contest Page 18 of ??

Problem H: Balanced Budget Initiative

Problem H: Balanced Budget Initiative

After bouncing 10 checks last month, you feel compelled to do something about your financial
management. Your bank has started providing you with your statement online, and you believe
that this is the opportunity to get your account in order by making sure you have the money to
cover the checks you write.

Your bank provides you with a monthly statement that lists your starting balance, each trans-
action, and final balance. Your task is to compare the statement with the transactions from your
checkbook register over the same time interval. You will identify transactions that appear in only
the statement or register, as well as incorrect amounts recorded in the register (naturally the bank’s
statement is always correct) and math mistakes in your register.

Input

The bank statement appears first. It begins and ends with lines of the form:

balance <X>

with the first line indicating the starting balance and the second line indicating the final balance.
In between the balances is the list of transactions, one per line, in the form:

{check|deposit} <N> <X>

WhereN is the integer check or deposit number (the same check or deposit number will only
appear once, although the same number can apply to both a check and deposit), andX is the
amount of the transaction.

Following the final balance the register entries appear. The first line of the register is the starting
balance

<X>

Following are pairs of lines, with the next transaction appearing followed by the balance you
calculated by hand after entering the transaction.

{check | deposit} <N> <X>
<X>

The pairs repeat until the end of the input file.
For all input numbers and intermediates,|X| < 1000000. All dollar amounts are given to the

penny (0.01).

Output

For ease correcting your register, the output for each transaction occurs in the order it appears in
the register. Each register entry receives exactly one line in the output.

If the register entry is entirely correct, meaning that it is found in the statement for the same
amount, the math in the register is correct, and it is not a duplicate entry for a transaction previously
found in the register, then output the line

{check|deposit} <N> is correct

Nov. 13, 2004 2004 Mid-Atlantic Regional Programming Contest Page 19 of ??

Problem H: Balanced Budget Initiative

However, if the transaction is not entirely correct, you will output a single line beginning with the
transaction type and number, and one or more of the following mistakes, whitespace separated, in
this order:

• is not in statementthe transaction type and number do not occur in the statement

• repeated transactionthe transaction has occurred previously in the register

• incorrect amount the register amount is different than the statement amount

• math uses correct valuethe math uses the value from the statement, although the actual
transaction amount is recorded incorrectly in the register. This can only appear ifincorrect
amount is also displayed.

• math mistakethe register balance after the transaction matches neither the statement amount
for the transaction, nor the register entry for the transaction (if different than the statement
amount)

Following the line for the final entry in the register, a listing of all transactions missing from
the register will be printed. These items may be printed in any order, one per line:

missed {check|deposit} <N>

Nov. 13, 2004 2004 Mid-Atlantic Regional Programming Contest Page 20 of ??

Problem H: Balanced Budget Initiative

Example

Input:

balance 1000.00
check 100 10.00
check 101 20.00
check 102 30.00
check 103 100.00
deposit 1 10.00
deposit 2 20.00
deposit 3 30.00
deposit 4 500.00
balance 1400.00
1000.00
check 100 10.00
990.00
deposit 2 25.00
1015.00
check 101 20.00
990.00
check 102 30.00
960.00
check 101 21.00
940.00
check 103 100.00
840.00
deposit 3 30.00
870.00
deposit 4 500.00
1370.00

Output:

check 100 is correct
deposit 2 incorrect amount
check 101 math mistake
check 102 is correct
check 101 repeated transaction incorrect amount math uses correct value
check 103 is correct
deposit 3 is correct
deposit 4 is correct
missed deposit 1

Nov. 13, 2004 2004 Mid-Atlantic Regional Programming Contest Page 21 of ??

