2008 Mid-Atlantic Regional Programming Contest
Practice Round

Welcome to the practice round for the 2008 Programming Contest. Before you start the contest,
please be aware of the following notes:

The Contest

1. There is one (1) practice problem. Please submit solutions or request clarifications for this
problem only. Unless you have a real question about the problem, please submit at most one
clarification request, and at most two runs. It is important that everyone have a chance to see
how the system works. Even if you do not solve the practice problem, you should submit
once just to practice with the system.

2. After (or even before) completing the practice problem, please read all of the notes listed
here. They are designed to help you solve the problems during the contest.
3. Solutions for problems submitted for judging are called runs. Each run will be judged.

The judges will respond to your submission with one of the following responses. In the event
that more than one response is applicable, the judges may respond with any of the applicable

responses.
| Response Explanation
Correct Your submission has been judged correct.

Wrong Answer Your submission generated output that is not correct or is
incomplete.

Output Format Error | Your submission’s output is not in the correct format or is
misspelled.

Excessive Output Your submission generated output in addition to or instead

of what is required.
Compilation Error | Your submission failed to compile.

Run-Time Error Your submission experienced a run-time error.
Time-Limit Exceeded | Your submission did not solve the judges’ test data within 30
seconds.

4. A team’s score is based on the number of problems they solve and penalty points, which
reflect the amount of time and number of incorrect submissions made before the problem is
solved. For each problem solved correctly, penalty points are charged equal to the time at
which the problem was solved plus 20 minutes for each incorrect submission. No penalty
points are added for problems that are never solved. Teams are ranked first by the number of
problems solved and then by the fewest penalty points.

Oct. 25, 2008 2008 Mid-Atlantic Regional Contest Practice Problem Page 1 of 4

5. This problem set contains sample input and output for each problem. However, you may be
assured that the judges will test your submission against several other more complex datasets,
which will not be revealed until after the contest. Your major challenge is designing other
input sets for yourself so that you may fully test your program before submitting your run.
Should you receive an incorrect judgment, you should consider what other datasets you could
design to further evaluate your program.

6. In the event that you feel a problem statement is ambiguous or incorrect, you may request
a clarification. Read the problem carefully before requesting a clarification. If the judges
believe that the problem statement is sufficiently clear, you will receive the response, “The
problem statement is sufficient; no clarification is necessary.” If you receive this response,
you should read the problem description more carefully. If you still feel there is an ambiguity,
you will have to be more specific or descriptive of the ambiguity you have found. If the
problem statement is ambiguous in specifying the correct output for a particular input, please
include that input data in the clarification request.

You may not submit clarification requests asking for the correct output for inputs that you
provide.Sample inputs may be useful in explaining the nature of a perceived ambiguity, e.g.,
“There is no statement about the desired order of outputs. Given the input: ..., would not
both this: ... and this: ... be valid outputs?”.

If a clarification is issued during the contest, it will be broadcast to all teams.

7. Runs for each particular problem will be judged in the order they are received. However, it
is possible that runs for different problems (during the actual contest) may be judged out of
order. For example, you may submit a run for B followed by a run for C, but receive the
response for C first.

Do not request clarifications on when a response will be returned. If you have not received
a response for a run within 30 minutes of submitting it, you may have a runner ask the
site judge to determine the cause of the delay. Under no circumstances should you ever
submit a clarification request about a submission for which you have not received a
judgment.

If, due to unforeseen circumstances, judging for one or more problems begins to lag more
than 30 minutes behind submissions, a clarification announcement will be issued to all teams.
This announcement will include a change to the 30 minute time period that teams are ex-
pected to wait before consulting the site judge.

8. The submission of abusive programs or clarification requests to the judges will be considered
grounds for immediate disqualification.

Your Programs

9. All solutions must read from standard input and write to standard output. In C this is
scanf/printf, in C++ this is cin/cout, and in Java this is System.in/System.out. The judges
will ignore all output sent to standard error (cerr in C++ or System.err in Java). You may

Oct. 25, 2008 2008 Mid-Atlantic Regional Contest Practice Problem Page 2 of 4

10.

11.

12.

13.

14.

wish to use standard error to output debugging information. From your workstation you may
test your program with an input file by redirecting input from a file:

program < file.in

All lines of program input and output should end with a newline character (\n, endl, or
println()).

All input sets used by the judges will follow the input format specification found in the
problem description. You do not need to test for input that violates the input format specified
in the problem.

Unless otherwise specified, all lines of program output should be left justified, with no lead-
ing blank spaces prior to the first non-blank character on that line.

If a problem specifies that an input is a floating point number, decimal points may be omitted
for numbers with no non-zero decimal portion. Scientific notation will not be used in input
sets unless a problem explicitly allows it.

Unless otherwise specified, all numbers will appear in the input and should be presented
in the output beginning with the — if negative, followed immediately by 1 or more decimal
digits. If it is a real number, then the decimal point appears, followed by any number of
decimal digits (for output of real numbers the number of digits after the decimal point will
be specified in the problem description as the “precision”). All real numbers printed to a
given precision should be rounded to the nearest value.

In simpler terms, neither scientific notation nor commas will be used for numbers, and you
should ensure you use a printing technique that rounds to the appropriate precision.

Good luck, and HAVE FUN!!!

Oct. 25, 2008 2008 Mid-Atlantic Regional Contest Practice Problem Page 3 of 4

Practice Problem: Roaming Romans

Practice Problem: Roaming Romans

The English word “mile” derives from the Latin “mille passus”, meaning
“a thousand paces”. A Roman mile was the distance a soldier would walk in
100 paces (a pace being two steps, one with each foot).

Over time, the actual distance referred to as a “mile” has changed. The
modern English mile is 5280 (modern) feet. The Roman mile is believed to
have been about 4,854 (modern) feet.

Write a program to convert distances in English miles into Roman miles and paces.

Input

Input will consist of one or more lines, each containing a single positive floating point number
denoting a distance in English miles. End of input is indicated by a value of 0.0.

Output

For each input value, print a line of output of the form
X English miles equals Y Roman miles or K paces.

where X is the value from the input, Y is the equivalent distance in Roman miles. Each of these
should be printed to 2 decimal digits precision. K is an integer denoting the number of paces, and
should be rounded to the closest integer.

Example
Input:
Given the input

1.0
20.267
454
0.0

the output would be

Output:

1.00 English miles equals 1.09 Roman miles or 1087.76 paces.
20.27 English miles equals 22.05 Roman miles or 22045.69 paces.
454.00 English miles equals 493.84 Roman miles or 493844.25 paces.

Oct. 25, 2008 2008 Mid-Atlantic Regional Contest Practice Problem Page 4 of 4

