
2012 Mid-Atlantic Regional Programming Contest

Welcome to the 2012 ICPC Mid-Atlantic Regional. Before you start the contest, please take
the time to review the following:

The Contest
1. There are eight (8) problems in the packet, using letters A–H. These problems are NOT

sorted by difficulty. As a team’s solution is judged correct, the team will be awarded a
balloon. The balloon colors are as follows:

Problem Problem Name Balloon Color
A Fifty Coats of Gray Yellow
B Component Testing Green
C Collision Detection Silver
D The Dueling Philosophers Problem Black
E Party Games Pink
F Funhouse Orange
G A Terribly Grimm Problem Purple
H Tsunami Red

2. Solutions for problems submitted for judging are called runs. Each run will be judged.

The judges will respond to your submission with one of the following responses. In the event
that more than one response is applicable, the judges may respond with any of the applicable
responses.

Response Explanation
Yes Your submission has been judged correct.

Wrong Answer Your submission generated output that is not correct
Output Format Error Your submission’s output is not in the correct format or is

misspelled.
Incomplete Output Your submission did not produce all of the required output.
Excessive Output Your submission generated output in addition to or instead

of what is required.
Compilation Error Your submission failed to compile.
Run-Time Error Your submission experienced a run-time error.

Time-Limit Exceeded Your submission did not solve the judges’ test data within 30
seconds.

Other-Contact Staff Contact your local site judge for clarification.

3. A team’s score is based on the number of problems they solve and penalty points, which
reflect the amount of time and number of incorrect submissions made before the problem is

Nov. 10, 2012 2012 Mid-Atlantic Regional Programming Contest Page 1 of 19



solved. For each problem solved correctly, penalty points are charged equal to the time at
which the problem was solved plus 20 minutes for each incorrect submission. No penalty
points are added for problems that are never solved. Teams are ranked first by the number of
problems solved and then by the fewest penalty points.

4. This problem set contains sample input and output for each problem. However, the judges
will test your submission against longer and more complex datasets, which will not be re-
vealed until after the contest. Your major challenge is designing other input sets for yourself
so that you may fully test your program before submitting your run. Should you receive a
judgment stating that your submission was incorrect, you should consider what other datasets
you could design to further evaluate your program.

5. In the event that you feel a problem statement is ambiguous or incorrect, you may request a
clarification. Read the problem carefully before requesting a clarification.

If a clarification is issued during the contest, it will be broadcast to all teams.

If the judges believe that the problem statement is sufficiently clear, you will receive the
response, “No response, read problem statement.” If you receive this response, you should
read the problem description more carefully. If you still feel there is an ambiguity, you will
have to be more specific or descriptive of the ambiguity you have found.

You may not submit clarification requests asking for the correct output for inputs that you
provide, e.g., “What would the correct output be for the input ...?” Determining that is
your job unless the problem description is truly ambiguous. Sample inputs may be useful in
explaining the nature of a perceived ambiguity, e.g., “There is no statement about the desired
order of outputs. Given the input: . . . , would both this: . . . and this: . . . be valid outputs?”.

6. Runs for each particular problem will be judged in the order they are received. However, it
is possible that runs for different problems may be judged out of order. For example, you
may submit a run for problem B followed by a run for problem C, but receive the response
for C first.

Do not request clarifications on when a response will be returned. If you have not received
a response for a run within 30 minutes of submitting it, you may have a runner ask the
local site judge to determine the cause of the delay. Under no circumstances should you
ever submit a clarification request about a submission for which you have not received a
judgment.

If, due to unforeseen circumstances, judging for one or more problems begins to lag more
than 30 minutes behind submissions, a clarification announcement will be issued to all teams.
This announcement will include a change to the 30 minute time period that teams are ex-
pected to wait before consulting the site judge.

7. The submission of abusive programs or clarification requests to the judges will be considered
grounds for immediate disqualification.

8. The submission of code deliberately designed to delay, crash, or otherwise negatively affect
the contest itself will be considered grounds for immediate disqualification.

Nov. 10, 2012 2012 Mid-Atlantic Regional Programming Contest Page 2 of 19



Your Programs
9. All solutions must read from standard input and write to standard output. In C this is

scanf/printf, in C++ this is cin/cout, and in Java this is System.in/System.out. The judges
will ignore all output sent to standard error (cerr in C++ or System.err in Java). You may
wish to use standard error to output debugging information. From your workstation you may
test your program with an input file by redirecting input from a file:

program < file.in

10. Unless otherwise specified, all lines of program output

• must be left justified, with no leading blank spaces prior to the first non-blank character
on that line,

• must end with the appropriate line terminator (\n, endl, or println()), and

• must not contain any blank characters at the end of the line, between the final specified
output and the line terminator.

You must not print extra lines of output, even if empty, that are not specifically required by
the problem statement.

11. Unless otherwise specified, all numbers in your output should begin with the minus sign (-)
if negative, followed immediately by 1 or more decimal digits. If the number being printed
is a floating point number, then the decimal point should appear, followed by the appropriate
number of decimal digits. For output of real numbers, the number of digits after the decimal
point will be specified in the problem description (as the “precision”).

All floating point numbers printed to a given precision should be rounded to the nearest
value. For example, if 2 decimal digits of precision is requested, then 0.0152 would be
printed as “0.02” but 0.0149 would be printed as “0.01”.

In simpler terms, neither scientific notation nor commas will be used for numbers, and you
should ensure that you use a printing technique that rounds to the appropriate precision.

12. All input sets used by the judges will follow the input format specification found in the
problem description. You do not need to test for input that violates the input format specified
in the problem.

13. All lines of program input will end with the appropriate line terminator (e.g., a linefeed on
Unix/Linux systems, a carriage return-linefeed pair on Windows systems).

14. If a problem specifies that an input is a floating point number, the input will be presented
according to the rules stipulated above for output of real numbers, except that decimal points
and the following digits may be omitted for numbers with no non-zero decimal portion.
Scientific notation will not be used in input sets unless a problem explicitly allows it.

Nov. 10, 2012 2012 Mid-Atlantic Regional Programming Contest Page 3 of 19



15. Every effort has been made to ensure that the compilers and run-time environments used by
the judges are as similar as possible to those that you will use in developing your code. With
that said, some differences may exist. It is, in general, your responsibility to write your code
in a portable manner compliant with the rules and standards of the programming language.
You should not rely upon undocumented and non-standard behaviors.

(a) One place where differences are likely to arise is in the size of the various numeric
types. Many problems will specify minimum and maximum values for numeric inputs
and outputs. You should write your code with the understanding that, on the judges’
machines:

• A C++ int, a C++ long, and a Java int are all 32-bits wide.
• A C++ long long and a Java long are 64-bits wide.
• A float in both languages is a 32-bit value capable of holding 6-7 decimal digits,

though many library functions will be less accurate.
• A double in both languages is a 64-bit value capable of holding 15-16 decimal

digits, though many library functions will be less accurate.

The data types on your own machines may differ in size from these, but if you follow
the guidelines above in choosing the types to hold your numbers, you can be assured
that they will suffice to hold those values on the judges’ machines.

(b) Another common source of non-portability is in C/C++ library structures. Although
the C & C++ standards are very explicit about which header file must declare certain
std symbols, the standards do not prohibit other headers from duplicating or loading
extra symbols.
For example, if your program uses both cout and ifstream, you might find that
your code compiles if you only #include <fstream>, because, as it happens, on
your machine the fstream header #includes the iostream header where cout
is properly declared. However, you cannot rely upon the judges’ machines having
libraries with the same structure. So it is your responsibility to #include the appro-
priate headers for whatever std library features you use.

Good luck, and HAVE FUN!!!

Nov. 10, 2012 2012 Mid-Atlantic Regional Programming Contest Page 4 of 19



Problem A: Fifty Coats of Gray

Problem A: Fifty Coats of Gray

A contractor is planning to bid on interior painting for an apartment.
These apartments are for student housing, so they are to be single-room ef-
ficiencies and have basic drywall walls and ceilings, with no particular ar-
chitectural features like crown molding. He would like to find a quicker
way to estimate how much paint it will take to paint the walls and ceilings
for each job. The plan for these buildings is to paint the four walls and the
ceiling. Of course, no paint is needed for window and door openings. All
rooms, windows and doors are rectangular. All rooms will be painted the
same color.

The contractor will provide you with information about the dimensions of the rooms, the win-
dows and doors for each floor plan, and the number of apartments. Your team is to write a program
that will tell him how many cans of paint he should include in his bid.
Input

There will be several test cases in the input. Each test case begins with a line with 6 integers:

n width length height area m

where n (1 ≤ n ≤ 100) is the number of apartments, width (8 ≤ width ≤ 100) is the width of
each room, length (8 ≤ length ≤ 100) is the length of each room, height (8 ≤ height ≤ 30) is the
height of each room, area (100 ≤ area ≤ 1, 000) is the area in square feet that can be covered by
each can of paint, and m (0 ≤ m ≤ 10) is the number of windows and doors.

On each of the next m lines will be two positive integers, width and height, describing a door
or window. No window or door will be larger than the largest wall. All linear measures will be
expressed in feet. The input will end with a line with six 0s.

Output
For each test case, output a single integer on its own line, indicating the number of cans of

paint needed to paint all of the walls and ceilings of all of the apartments.

Example
Given the input

50 8 20 8 350 2
6 3
3 3
50 8 20 8 300 3
6 3
5 3
3 3

Nov. 10, 2012 2012 Mid-Atlantic Regional Programming Contest Page 5 of 19



Problem A: Fifty Coats of Gray
0 0 0 0 0 0

the output would be

83
95

Nov. 10, 2012 2012 Mid-Atlantic Regional Programming Contest Page 6 of 19



Problem B: Component Testing

Problem B: Component Testing

The engineers at ACM Corp. have just developed some new compo-
nents. They plan to spend the next two months thoroughly reviewing and
testing these new components. The components are categorized into several
different classes, depending on their complexity and importance. Compo-
nents in different classes may require different number of reviewers, whereas
components in the same class always require the same number of reviewers.

There are also several different job titles at ACM Corp. Each engineer
holds a single job title. All engineers holding a given job title have the same limit on the number of
components that they can review. Note that an engineer can be assigned to review any collection
of components and will be able to complete the task, regardless of which classes the components
belong to. An engineer may review some components of the same class, and others from different
classes, but an engineer cannot review the same component more than once.

Can the engineers complete their goal and finish testing all components in two months?
Input

There will be multiple test cases in the input.
The first line of each test case contains two integers n (1 ≤ n ≤ 10, 000) and m (1 ≤ m ≤

10, 000), where n is the number of component classes and m is the number of engineer job titles.
Each of the next n lines contains two integers j (1 ≤ j ≤ 100, 000) and c (0 ≤ c ≤ 100, 000),

indicating that there are j components in this class and that each component requires at least c
different reviewers.

Then each of the next m lines each contains two integers k (1 ≤ k ≤ 100, 000) and d (0 ≤
d ≤ 100, 000), indicating that there are k engineers with this job title and that each engineer may
be assigned to review at most d components.

The input will end with a line with two 0s.

Output
For each test case, print a single line containing 1 if it is possible for the engineers to finish

testing all of the components and 0 otherwise.

Example
Given the input

3 2
2 3
1 2
2 1
2 2
2 3

Nov. 10, 2012 2012 Mid-Atlantic Regional Programming Contest Page 7 of 19



Problem B: Component Testing
5 2
1 1
1 3
1 1
1 3
1 1
1 20
1 4
0 0

the output would be

1
0

Nov. 10, 2012 2012 Mid-Atlantic Regional Programming Contest Page 8 of 19



Problem C: Collision Detection

Problem C: Collision Detection

As a preliminary step in developing an autonomous vehicle system, your
team is seeking to prove that a central traffic controller can sound an alert
when automobiles are likely to collide unless corrective actions are taken.

The test course consists of a number of straight tracks that intersect at a
variety of angles. As cars pass sensors mounted on the tracks, their position
and speed is recorded and sent to the central controller. The controller remembers its two most
recent sets of readings for each car.

There is some built-in uncertainty in this process. The readings provided by the sensors are
not exact. Also, simple automated sensors can’t tell us what the drivers are thinking and whether
they are already alert to the presence of other traffic. The controller can almost never state that a
collision is unavoidable, and if it could make such a statement, it would probably not be able to do
so in time for the drivers to take evasive action.

We therefore want the controller to sound the alert whenever two cars will pass“dangerously
close” to one another any time within the next 30 seconds, assuming that they continue to behave
as they have been recently observed to do. For this purpose, we will say that cars are dangerously
close if they pass within 18 ft. of one another. Cars are considered safe if their closest approach
is at least 20 ft. apart. A passage within 18. . . 20 ft. is considered ambiguous and may be treated
either as dangerous or safe.

Assume that
• the cars remain on their straight course

• the acceleration (change in speed per unit time) of each car remains constant over the time
between observations and for the next 30 sec, with the two exceptions given below. Accel-
erations may be negative, indicating a car that is slowing down.

If a car with initial speed s0 has constant acceleration a, then its speed at the end of a time
interval t is

st = at+ s0

Over that same time interval, the car would travel a distance

d =
a

2
t2 + ts0

• The two exceptions to the assumption that cars will maintain constant acceleration are:

1. If the car is decelerating, it stops decelerating if its speed reaches zero (cars do not shift
into reverse)

2. If the car is accelerating, it stops accelerating when its speed reaches 80 feet per second
(approx 55 m.p.h.)

Nov. 10, 2012 2012 Mid-Atlantic Regional Programming Contest Page 9 of 19



Problem C: Collision Detection
Input

The input may contain multiple data sets.
Each data set consists of 4 observations, one observation per line. The first two observations

are for car 1, the second two are for car 2.
Each observation consists of four floating point numbers t, x, y, s, where

• t is the time of the observation (in seconds), 0 ≤ t ≤ 120.0

• x and y give the position of the car at the time of the observation (in feet), −5000 ≤ x, y ≤
5000

• s is the speed in feet per second, 0 ≤ s ≤ 80.

There will be no data sets in which the closest approach within the indicated timer interval
falls in the ambiguous 18. . . 20 ft. range. The two observations for a given car will always occur at
distinct times, and the first observation time for each car will be earlier than the second observation
time for that car.

Input is terminated by an observation consisting of 4 negative numbers.

Output
For each data set, print a single line consisting of either “Dangerous” or “Safe”, depending

on whether a dangerously close passage is predicted to occur within 30 seconds following the
maximum of the 4 observation times.

Example
Given the input

10 0 0 10
11 7.42 7.42 11
11 41.0 106.0 16
12 56 106 14
0 0 0 50
0.5 21.7 12.5 50.1
0.25 39.0 22.5 50
0.75 60.7 35.0 50.1
-1 -1 -1 -1

the output would be

Dangerous
Safe

Nov. 10, 2012 2012 Mid-Atlantic Regional Programming Contest Page 10 of 19



Problem D: The Dueling Philosophers Problem

Problem D: The Dueling Philosophers Problem

Following a sad and strange incident involving a room full of philoso-
phers, several plates of spaghetti, and one too few forks, the faculty of the
Department of Philosophy at University have been going through the pa-
pers of a recently deceased colleague. The faculty members were amazed to
find numerous unpublished essays. They believe that the essays, collected
into one volume, may constitute a major work of scholarship that will give
their department some much-needed positive publicity. Naturally, all of the faculty members began
to vie for the honor (to say nothing of the fame) of serving as editor of the collection.

After much debate, the faculty members have narrowed the list to two candidates. Both appli-
cants were asked to explain how they would arrange the essays within the final book. Both have
noted that many of the essays define terminology and concepts that are explored in other essays,
and both have agreed to the basic principle that an essay that uses a term must itself define that
term or appear after the essay that defines it.

One of the candidates has presented what he claims is the only possible arrangement of the
essays under those constraints, and is arguing that he should be given the job simply because he
has already done this major part of the work. The second candidate scoffs at this claim, insisting
that there are many possible arrangements of the essays, and that an editor of true skill (himself) is
needed to choose the optimal arrangement.

Write a program to determine if zero, one, or more than one arrangement of the essays is
possible.
Input

There will be multiple test cases in the input.
Each test case will begin with a line with two integers, n (1 ≤ n ≤ 1, 000) and m (1 ≤ m ≤

50, 000), where n is the number of essays, and m is the number of relationships between essays
caused by sharing terms.

On each of the next m lines will be two integers, d and u (1 ≤ u, d ≤ n, d 6= u) which indicate
that a term is defined in essay d and used in essay u.

The input will end with two 0s on their own line.

Output
For each test case, print a single line of output containing a 0 if no arrangement is possible, a 1

if exactly one arrangement is possible, or a 2 if multiple arrangements are possible (the output will
be “2” no matter how many arrangements there are).

Example
Given the input

5 4

Nov. 10, 2012 2012 Mid-Atlantic Regional Programming Contest Page 11 of 19



Problem D: The Dueling Philosophers Problem
1 5
5 2
3 2
4 3
5 4
3 1
4 2
1 5
5 4
2 2
1 2
2 1
0 0

the output would be

2
1
0

Nov. 10, 2012 2012 Mid-Atlantic Regional Programming Contest Page 12 of 19



Problem E: Party Games

Problem E: Party Games

You’ve been invited to a party. The host wants to divide the guests into
2 teams for party games, with exactly the same number of guests on each
team. She wants to be able to tell which guest is on which team as she greets
them when they arrive. She’d like to do so as easily as possible, without
having to take the time to look up each guest’s name on a list.

Being a good computer scientist, you have an idea: give her a single string, and all she has to
do is compare the guest’s name alphabetically to that string. To make this even easier, you would
like the string to be as short as possible.

Given the unique names of n party guests (n is even), find the shortest possible string S such
that exactly half the names are less than or equal to S, and exactly half are greater than S. If there
are multiple strings of the same shortest possible length, choose the alphabetically smallest string
from among them.
Input

There may be multiple test cases in the input.
Each test case will begin with an even integer n (2 ≤ n ≤ 1, 000) on its own line.
On the next n lines will be names, one per line. Each name will be a single word consisting

only of capital letters and will be no longer than 30 letters.
The input will end with a 0 on its own line.

Output
For each case, print a single line containing the shortest possible string (with ties broken in

favor of the alphabetically smallest) that your host could use to separate her guests. The strings
should be printed in all capital letters.

Example
Given the input

4
FRED
SAM
JOE
MARGARET
2
FRED
FREDDIE
2
JOSEPHINE
JERRY

Nov. 10, 2012 2012 Mid-Atlantic Regional Programming Contest Page 13 of 19



Problem E: Party Games
2
LARHONDA
LARSEN
0

the output would be

K
FRED
JF
LARI

Nov. 10, 2012 2012 Mid-Atlantic Regional Programming Contest Page 14 of 19



Problem F: Funhouse

Problem F: Funhouse
An amusement park is building a new walk-through funhouse. It is being

built in a large space: 1000ft x 1000ft. The park will build walls in the space,
separating it into rooms. Some walls will have doors so that guests can move
between rooms. Guests will enter through specially marked entrances, and
exit through specially marked exits. They can move through the space as
they wish - in fact, there may be many different ways of moving from the
entrance to the exit. Of course, there will be many amusing things along the
way.

The park designers want to install shakerboards, which are moving floors, to surprise the
guests. To enhance the surprise factor, wherever they install shakerboards, they’ll fill the whole
room with them. That way, the boards won’t stand out.

The designers want every guest in the funhouse to experience shakerboards, but, as you can
imagine, shakerboards are expensive, so the park wants to cover as little space with them as possi-
ble.

Given a description of a funhouse design, what’s the smallest area that must be covered with
shakerboards to assure that every guest experiences them?
Input

There will be several data sets. Each data set will begin with a line with one integer n (3 ≤
n ≤ 1, 000), which is the number of walls.

Each of the next n lines will describe a wall, like this:

x1 y1 x2 y2 EXDW

where (x1, y1) and (x2, y2) are the endpoints of the wall, and EXDW is a single capital letter: ‘E’
for an entrance, ‘X’ for an exit, ‘D’ for an interior wall with a door, and ‘W’ for any wall without
a door. ‘E’ and ‘X’ are guaranteed to only appear on exterior walls, and ‘D’ is guaranteed to only
appear on interior walls. ‘W’ may appear on either.

The endpoint coordinates will be integers, with values between 0 and 1, 000 inclusive. Walls
will never intersect each other in any way or be coincident, except for sharing endpoints. Every
endpoint will be coincident with another wall’s endpoint. No wall will have zero length. There is
guaranteed to be at least one way to get from every entrance to some exit and to every exit from
some entrance. The funhouse will consist of a single building. In order to provide power through-
out the building, every interior wall is connected to an exterior wall either directly or indirectly via
a series of other walls.

End of input will be marked by a line with a single 0.

Output
For each test case, print a single line containing the smallest area that the park owners must

cover with shakerboards so that every guest in the funhouse will experience them. This should be
printed as a floating point number to one decimal digit precision.

Nov. 10, 2012 2012 Mid-Atlantic Regional Programming Contest Page 15 of 19



Problem F: Funhouse
Example

Given the input

6
0 0 100 0 W
0 0 0 100 E
0 100 100 100 W
100 0 100 100 D
100 0 200 0 W
200 0 100 100 X
14
0 0 100 0 W
100 0 110 0 E
110 0 190 0 W
190 0 200 0 E
0 0 0 100 W
100 0 100 100 D
200 0 200 100 W
0 100 100 100 D
100 100 200 100 D
0 100 0 150 X
100 100 100 150 D
200 100 200 150 X
0 150 100 150 W
100 150 200 150 W
0

the output would be

5000.0
10000.0

Nov. 10, 2012 2012 Mid-Atlantic Regional Programming Contest Page 16 of 19



Problem G: A Terribly Grimm Problem

Problem G: A Terribly Grimm Problem

Grimm’s conjecture states that to each element of a set of consecutive
composite numbers one can assign a distinct prime that divides it.

For example, for the range 242 to 250, one can assign distinct primes as
follows:

242 243 244 245 246 247 248 249 250
2 3 61 7 41 13 31 83 5

Given the lower and upper bounds of a sequence of composite numbers, find
a distinct prime for each. If there is more than one such assignment, output
the one with the smallest first prime. If there is still more than one, output
the one with the smallest second prime, and so on.

Input
There may be several data sets.
Each data set will consist of a single line with two integers, L and H (4 ≤ L < H ≤ 1010). It

is guaranteed that all the numbers in the range from L . . .H , inclusive, are composite.
The input will end with a line with two 0s.

Output
For each data set, print a single line containing the set of unique primes, in order, separated by

a single space.

Example
Given the input

242 250
8 10
0 0

the output would be

2 3 61 7 41 13 31 83 5
2 3 5

Nov. 10, 2012 2012 Mid-Atlantic Regional Programming Contest Page 17 of 19



Problem H: Tsunami

Problem H: Tsunami

The country of Cartesia can be described simply by a Cartesian plane.
The x-axis is a shoreline. The positive y half-plane is land, and the negative
y half-plane is ocean. Several large cities dot the mainland. Their positions
can be described by coordinates (x, y), with y > 0. Unfortunately, there
are sometimes tsunamis in the ocean near Cartesia. When this happens,
the entire country can flood. The waters will start at y = 0 and advance
uniformly in the positive y direction.

Cartesia is trying to develop a tsunami warning system. The warning system consists of two
components: a single meteorological center which can detect a tsunami miles out, and wired con-
nections which can carry the warning from city to city in straight lines. (No wireless communica-
tion!!)

A city is considered safe if it either has the meteorological center, or if it has a direct wire
connection to another safe city (i.e. if it has a multi-hop cable path to the meteorological center).

The transmission time along the cables and through each city is negligible. Nonetheless, a
simple engineering problem is made more complicated by politics! If a city A receives the warning
via a wire from city B, and city B is further away from the shore than city A, then city A’s leaders
will complain! We’re closer to the ocean than city B, so we should have gotten the word first! With
a sigh, you agree to find a solution where no city will get the warning via a wire from a city that’s
further from the shore.

Given a description of Cartesia, find the least amount of cable necessary to build a tsunami
warning system where every city is safe, and no city will receive the warning via a wire another
city that is further from the shore.
Input

There may be several test cases in the input.
Each test case will begin an integer n (1 ≤ n ≤ 1, 000) on its own line, indicating the number

of cities.
On each of the next n lines will be a pair of integers x and y (−1, 000 ≤ x ≤ 1, 000, 0 < y ≤

1, 000), each of which is the (x, y) location of a city.
The input will end with a line containing a single 0.

Output
For each test case, print a single line containing the minimum amount of cable which must be

used to build the tsunami warning system. This should be printed as a floating point number to two
decimal places precision.

Example
Given the input

Nov. 10, 2012 2012 Mid-Atlantic Regional Programming Contest Page 18 of 19



Problem H: Tsunami
3
100 10
300 10
200 110
4
100 10
300 10
200 110
200 60
0

the output should be

341.42
361.80

Nov. 10, 2012 2012 Mid-Atlantic Regional Programming Contest Page 19 of 19


