
2012 Mid-Atlantic Regional Programming Contest
Practice Round

Welcome to the practice round for the 2012 ICPC Mid-Atlantic Regional. Before you start the
contest, please take the time to review the following:

The Contest
1. There is one (1) practice problem. Please submit solutions or request clarifications for this

problem only. Unless you have a real question about the problem, please submit at most one
clarification request, and at most two runs. It is important that everyone have a chance to see
how the system works. Even if you do not solve the practice problem, you should submit
once just to practice with the system.

2. After (or even before) completing the practice problem, please read all of the notes listed
here. They are designed to help you solve the problems during the contest.

3. Solutions for problems submitted for judging are called runs. Each run will be judged.

The judges will respond to your submission with one of the following responses. In the event
that more than one response is applicable, the judges may respond with any of the applicable
responses.

Response Explanation
Yes Your submission has been judged correct.

Wrong Answer Your submission generated output that is not correct
Output Format Error Your submission’s output is not in the correct format or is

misspelled.
Incomplete Output Your submission did not produce all of the required output.
Excessive Output Your submission generated output in addition to or instead

of what is required.
Compilation Error Your submission failed to compile.
Run-Time Error Your submission experienced a run-time error.

Time-Limit Exceeded Your submission did not solve the judges’ test data within 30
seconds.

Other-Contact Staff Contact your local site judge for clarification.

4. A team’s score is based on the number of problems they solve and penalty points, which
reflect the amount of time and number of incorrect submissions made before the problem is
solved. For each problem solved correctly, penalty points are charged equal to the time at
which the problem was solved plus 20 minutes for each incorrect submission. No penalty
points are added for problems that are never solved. Teams are ranked first by the number of
problems solved and then by the fewest penalty points.

Nov. 10, 2012 2012 Mid-Atlantic Regional Contest Practice Problem Page 1 of 6



5. This problem set contains sample input and output for each problem. However, the judges
will test your submission against longer and more complex datasets, which will not be re-
vealed until after the contest. Your major challenge is designing other input sets for yourself
so that you may fully test your program before submitting your run. Should you receive a
judgment stating that your submission was incorrect, you should consider what other datasets
you could design to further evaluate your program.

6. In the event that you feel a problem statement is ambiguous or incorrect, you may request a
clarification. Read the problem carefully before requesting a clarification.

If a clarification is issued during the contest, it will be broadcast to all teams.

If the judges believe that the problem statement is sufficiently clear, you will receive the
response, “No response, read problem statement.” If you receive this response, you should
read the problem description more carefully. If you still feel there is an ambiguity, you will
have to be more specific or descriptive of the ambiguity you have found.

You may not submit clarification requests asking for the correct output for inputs that you
provide, e.g., “What would the correct output be for the input ...?” Determining that is
your job unless the problem description is truly ambiguous. Sample inputs may be useful in
explaining the nature of a perceived ambiguity, e.g., “There is no statement about the desired
order of outputs. Given the input: . . . , would both this: . . . and this: . . . be valid outputs?”.

7. Runs for each particular problem will be judged in the order they are received. However, it
is possible that runs for different problems (during the actual contest) may be judged out of
order. For example, you may submit a run for problem B followed by a run for problem C,
but receive the response for C first.

Do not request clarifications on when a response will be returned. If you have not received
a response for a run within 30 minutes of submitting it, you may have a runner ask the
local site judge to determine the cause of the delay. Under no circumstances should you
ever submit a clarification request about a submission for which you have not received a
judgment.

If, due to unforeseen circumstances, judging for one or more problems begins to lag more
than 30 minutes behind submissions, a clarification announcement will be issued to all teams.
This announcement will include a change to the 30 minute time period that teams are ex-
pected to wait before consulting the site judge.

8. The submission of abusive programs or clarification requests to the judges will be considered
grounds for immediate disqualification.

9. The submission of code deliberately designed to delay, crash, or otherwise negatively affect
the contest itself will be considered grounds for immediate disqualification.

Your Programs
10. All solutions must read from standard input and write to standard output. In C this is

scanf/printf, in C++ this is cin/cout, and in Java this is System.in/System.out. The judges

Nov. 10, 2012 2012 Mid-Atlantic Regional Contest Practice Problem Page 2 of 6



will ignore all output sent to standard error (cerr in C++ or System.err in Java). You may
wish to use standard error to output debugging information. From your workstation you may
test your program with an input file by redirecting input from a file:

program < file.in

11. Unless otherwise specified, all lines of program output

• must be left justified, with no leading blank spaces prior to the first non-blank character
on that line,

• must end with the appropriate line terminator (\n, endl, or println()), and

• must not contain any blank characters at the end of the line, between the final specified
output and the line terminator.

You must not print extra lines of output, even if empty, that are not specifically required by
the problem statement.

12. Unless otherwise specified, all numbers in your output should begin with the minus sign (-)
if negative, followed immediately by 1 or more decimal digits. If the number being printed
is a floating point number, then the decimal point should appear, followed by the appropriate
number of decimal digits. For output of real numbers, the number of digits after the decimal
point will be specified in the problem description (as the “precision”).

All floating point numbers printed to a given precision should be rounded to the nearest
value. For example, if 2 decimal digits of precision is requested, then 0.0152 would be
printed as “0.02” but 0.0149 would be printed as “0.01”.

In simpler terms, neither scientific notation nor commas will be used for numbers, and you
should ensure that you use a printing technique that rounds to the appropriate precision.

13. All input sets used by the judges will follow the input format specification found in the
problem description. You do not need to test for input that violates the input format specified
in the problem.

14. All lines of program input will end with the appropriate line terminator (e.g., a linefeed on
Unix/Linux systems, a carriage return-linefeed pair on Windows systems).

15. If a problem specifies that an input is a floating point number, the input will be presented
according to the rules stipulated above for output of real numbers, except that decimal points
and the following digits may be omitted for numbers with no non-zero decimal portion.
Scientific notation will not be used in input sets unless a problem explicitly allows it.

16. Every effort has been made to ensure that the compilers and run-time environments used by
the judges are as similar as possible to those that you will use in developing your code. With
that said, some differences may exist. It is, in general, your responsibility to write your code
in a portable manner compliant with the rules and standards of the programming language.
You should not rely upon undocumented and non-standard behaviors.

Nov. 10, 2012 2012 Mid-Atlantic Regional Contest Practice Problem Page 3 of 6



(a) One place where differences are likely to arise is in the size of the various numeric
types. Many problems will specify minimum and maximum values for numeric inputs
and outputs. You should write your code with the understanding that, on the judges’
machines:

• A C++ int, a C++ long, and a Java int are all 32-bits wide.
• A C++ long long and a Java long are 64-bits wide.
• A float in both languages is a 32-bit value capable of holding 6-7 decimal digits,

though many library functions will be less accurate.
• A double in both languages is a 64-bit value capable of holding 15-16 decimal

digits, though many library functions will be less accurate.

The data types on your own machines may differ in size from these, but if you follow
the guidelines above in choosing the types to hold your numbers, you can be assured
that they will suffice to hold those values on the judges’ machines.

(b) Another common source of non-portability is in C/C++ library structures. Although
the C & C++ standards are very explicit about which header file must declare certain
std symbols, the standards do not prohibit other headers from duplicating or loading
extra symbols.
For example, if your program uses both cout and ifstream, you might find that
your code compiles if you only #include <fstream>, because, as it happens, on
your machine the fstream header #includes the iostream header where cout
is properly declared. However, you cannot rely upon the judges’ machines having
libraries with the same structure. So it is your responsibility to #include the appro-
priate headers for whatever std library features you use.

Good luck, and HAVE FUN!!!

Nov. 10, 2012 2012 Mid-Atlantic Regional Contest Practice Problem Page 4 of 6



Practice Problem: St. Ives

Practice Problem: St. Ives

Robert the chapman (a medieval traveling merchant) made regular trips between his
home village and St. Ives to peddle his cloth, ribbons, and needles. On one such trip he
encountered a curious procession:

As I was traveling to St. Ives
I met a man with seven wives.
Every wife had seven sacks.
Every sack had seven cats.
Every cat had seven kits.
Kits, cats, sacks, wives -
How many were traveling to St. Ives?

The answer to this classic ancient riddle is ‘one’. Robert was traveling to St. Ives. The others
were all traveling away from St. Ives. However, if we prefer to ask the question of how many were
traveling from St. Ives, we can add up:

• 1 man

• 7 wives

• 7*7 sacks

• 7*7*7 cats

• 7*7*7*7 kittens

for a total of 2801.
On his next trip to St. Ives, Robert met the same man, this time accompanied by 3 wives, each

with 3 sacks, and so on. Becoming curious about what seemed to be a bizarre village ritual of some
kind, Robert kept track of how many traveled with the man each time he encountered him during
the subsequent year.

Help Robert compute the number of people he has encountered during his travels to St. Ives.

Input
Input consists of multiple data sets. Each data set consists of a line with a single floating point
number number representing the average number of wives, sacks per wife, cats per sack, and
kittens per cat that Robert encountered that year.

End of input is indicated by a value of zero.

Output
For each data set, print the number traveling from St. Ives as a floating point number presented to
2 decimal digits precision.

Nov. 10, 2012 2012 Mid-Atlantic Regional Contest Practice Problem Page 5 of 6



Practice Problem: St. Ives
Example
Input:

Given the input

7
1
2.5
0

the output would be

Output:

2801.00
5.00
64.44

Nov. 10, 2012 2012 Mid-Atlantic Regional Contest Practice Problem Page 6 of 6


