
2016 Mid-Atlantic Regional Programming Contest

Welcome to the 2016 ICPC Mid-Atlantic Regional. Before you start the contest, please take
the time to review the following:

The Contest
1. There are eight (8) problems in the packet, labeled A–H. These problems are NOT sorted by

difficulty. As a team’s solution is judged correct, the team will be awarded a balloon. The
balloon colors are as follows:

Problem Problem Name Balloon Color
A Periodic Strings Orange
B Around and Around We Go Green
C Buggy Robot Silver
D Enclosure Area Pink
E Toys and Triangles Red
F Islands Yellow
G Ghostbusters 2 Black
H Painting the Floodwall Purple

2. The winning team is the one that successfully completes the most problems in the time
allowed.

If teams are tied with the same number of problems solved, the tie is broken in favor of the
team with the fewest penalty points. For each problem solved correctly, penalty points are
charged as the sum of

• the number of minutes elapsed since the start of the contest to when the successful
submission was made, and

• 20 points for each incorrect submission prior to the successful one.

No penalty points are added for problems that are never solved.

3. In the event that you feel a problem statement is ambiguous or incorrect, you may request a
clarification. Read the problem carefully before requesting a clarification.

If a clarification is issued during the contest, it will be broadcast to all teams.

If the judges believe that the problem statement is sufficiently clear, you will receive the
response, “No response, read problem statement.” If you receive this response, you should
read the problem description more carefully. If you still feel there is an ambiguity, you will
have to be more specific or descriptive of the ambiguity you may have found.

Nov. 5, 2016 2016 Mid-Atlantic Regional Programming Contest Page 1 of 19

Submitting
4. Solutions for problems submitted for judging are called runs. Each run will be judged.

5. The judges will execute your program on multiple test cases. To be successful, each test
execution must return the correct output, formatted as specified in the problem statement,
and must complete execution within the appropriate time limit.

If a problem does not specify a time limit as part of its output format description, then it
must complete each test case within 2 seconds.

• Although Python is accepted as a programming language in this contest, no guarantee
is made that a Python solution is possible that runs within the time limits allowed for
any given problem.

6. The judges will respond to your submission with one of the following responses.

Response Explanation
Yes Your submission has been judged correct.

Wrong Answer Your submission generated output that is not correct.
Output Format Error Your submission’s output is not in the correct format or is

misspelled.
Incomplete Output Your submission did not produce all of the required output.
Excessive Output Your submission generated output in addition to or instead

of what is required.
Compilation Error Your submission failed to compile.
Run-Time Error Your submission experienced a run-time error.

Time-Limit Exceeded Your submission did not solve one or more of the judges’ test
data within the allotted time period.

Other-Contact Staff Contact your local site judge for clarification.

7. In the event that more than one response is applicable, the judges may respond with any of
the applicable responses. For example, a program that runs too long but produces incorrect
output before it is killed might receive either a “Wrong Answer” or a “Time-Limit Exceeded”
response. A program that crashes before completing the test data set might receive either an
“Incomplete Output” or a “Run-Time Error” response.

8. Do not request clarifications on when a response will be returned. If you have not received a
response for a run within 30 minutes of submitting it, you may have a runner ask the local
site judge to determine the cause of the delay.
If, due to unforeseen circumstances, judging for one or more problems begins to lag more
than 30 minutes behind submissions, a clarification announcement will be issued to all teams.
This announcement will include a change to the 30 minute time period that teams are ex-
pected to wait before consulting the site judge.

9. The submission of code deliberately designed to delay, crash, or otherwise negatively affect
the contest itself will be considered grounds for immediate disqualification.

Nov. 5, 2016 2016 Mid-Atlantic Regional Programming Contest Page 2 of 19

Your Programs
10. Your program must be contained within a single source-code file. Java programs should be

written in the default (unnamed) package, meaning that it should not contain a package
statement at all.

Use the filename extension “.cpp” for C++ program files. Use the extension “.c” for C
program files. Use the extension “.java” for Java program files. Use the extension “.py”
for Python program files.

Note that all filename extensions are lower case.

11. Your code will be compiled for judging as follows:

C: gcc -O2 -std=gnu99 -static yourFileName -lm

C++: g++ -O2 -std=gnu++11 yourFileName

Java: javac -encoding UTF-8 -sourcepath . -d . yourFileName

For Java, the compiled code will be executed using the command:

java XX:+UseSerialGC -Xss64m -Xms1024m -Xmx1024m yourClassName

Python 3: python3 yourFileName

12. All solutions must read from standard input and write to standard output. Do not print to the
standard error stream, as this may be mistaken for a run-time error signal.

13. Unless otherwise specified, all lines of program output

• must be left justified, with no leading blank spaces prior to the first non-blank character
on that line,

• must end with the appropriate line terminator (\n, endl, or println()), and

• must not contain any blank characters at the end of the lines, between the final specified
output and the line terminator.

You must not print extra lines of output, even if empty, that are not specifically required by
the problem statement.

14. Unless otherwise specified, all numbers in your output should begin with the minus sign (-)
if negative, followed immediately by 1 or more decimal digits. If the number being printed
is a floating point number, then the decimal point should appear, followed by the appropriate
number of decimal digits.

For output of real numbers, the number of digits after the decimal point will be specified in
the problem description (as the “decimal digits of precision”).

All floating point numbers printed to a given precision should be rounded to the nearest value,
using unbiased (a.k.a. half-to-even) rounding. For example, if 2 decimal digits of precision
is requested, then the table below shows how certain exact values would be printed:

Nov. 5, 2016 2016 Mid-Atlantic Regional Programming Contest Page 3 of 19

exact prints as
0.0149 0.01
0.0251 0.03
0.015 0.02
0.025 0.02

In other words, neither scientific notation nor commas will be used for numbers, and you
should ensure that you use a printing technique that rounds to the appropriate precision.

15. All input sets used by the judges will follow the input format specification found in the
problem description. You do not need to test for input that violates the input format specified
in the problem.

16. All lines of program input will end with the appropriate line terminator (e.g., a linefeed on
Unix/Linux systems, a carriage return-linefeed pair on Windows systems).

17. If a problem specifies that an input is a floating point number, the input will be presented
according to the rules stipulated above for output of real numbers, except that decimal points
and the following digits may be omitted for numbers with no non-zero decimal portion.
Scientific notation will not be used in input sets unless a problem explicitly allows it.

18. Every effort has been made to ensure that the compilers and run-time environments used by
the judges are as similar as possible to those that you will use in developing your code. With
that said, some differences may exist. It is, in general, your responsibility to write your code
in a portable manner compliant with the rules and standards of the programming language.
You should not rely upon undocumented and non-standard behaviors.

Good luck, and HAVE FUN!!!

Nov. 5, 2016 2016 Mid-Atlantic Regional Programming Contest Page 4 of 19

Problem A: Periodic Strings

Problem A: Periodic Strings
Define a k-periodic string as follows:

A string s is k-periodic if |s|, the length of the string, is a multiple of k and, if
you chop the string up into |s|/k substrings of length k, then each of those substrings
(except the first) is the same as the previous substring, but with its last character moved
to the front.

For example, the following string is 3-periodic:

abccabbcaabc

The above string breaks up into substrings abc, cab, bca, and abc, and each substring (except
the first) is a rotation of the previous substring (abc→ cab, cab→ bca, bca→ abc).

Given a string, determine the smallest k for which the string is k-periodic.

Input
Input will be a single line containing a string s, (1 ≤ |s| ≤ 100), consisting only of lower-case

letters.

Output
Print a single line containing an integer denoting the smallest value of k for which the input

string is k-periodic.

Examples
Sample Input Sample Output
aaaaaaaa 1
abbaabbaabba 2
abcdef 6
abccabbcaabc 3

Nov. 5, 2016 2016 Mid-Atlantic Regional Programming Contest Page 5 of 19

Problem B: Around and Around We Go

Problem B: Around and Around We Go
A round is a musical ar-

rangement in which two or
more voices repeat the same
melodic line at times offset
from one another. One of
the more famous rounds is the
nursery rhyme, “Row, Row,
Row Your Boat”, shown here,
where a new voice can enter when the first voice reaches any of the ‘*’s.

In western music, an integer count of time units can be assigned to each syllable of a word to
indicate how long that syllable is sung. Occasionally a pause (called a “rest”) of one or more time
units is inserted, and is also assigned an integer count of time units. If you know the time allocated
to each word and rest, and the time offset at which each next voice begins singing the line, you can
figure out which words will overlap in the round.

Write a program to list a two-voice round, lining up the words in the two voices so that syllables
being sung simultaneously appear in a vertical column.

For each line of the song, print that line for the first voice, followed by a line for the second
voice. The first voice line will contain the same syllables as the original line of input. Implicitly,
that line defines a period of time starting with the beginning of the sound or the first syllable and
ending of the sound of the last syllable on that line. The second voice line will contain any syllables
of the song that start their sound during that time period (though the last syllable might not finish
sounding until afterwards).

Each syllable will be printed as far to the left as possible, with plus signs (‘+’) inserted in front
of syllables so as to satisfy the constraints:
• Consecutive symbols in the same line will be separated by at least one ‘+’.

• The first syllable in a line for the first voice is printed starting in the leftmost column of the
line.

• Two syllables that begin at the same time in their respective voices are printed with their
leftmost characters in the same column.

• If a syllable S2 in the either voice begins K time units after a syllable S1 in the other voice
begins, then the first character of S2 appears in a column at least K to the right of the first
letter of S1.

It is possible that some second-voice lines will be empty (if no syllables of the second voice
are started during that line).

It is possible (in fact, likely) that not all syllables of the second voice will be printed.

Nov. 5, 2016 2016 Mid-Atlantic Regional Programming Contest Page 6 of 19

Problem B: Around and Around We Go
Input

Input will begin with a line containing two integers, L and N . L is the number of lines in the
song, 0 < L ≤ 10. N indicates the time at which the second voice begins, assuming that the first
voice begins at time zero. 0 ≤ N ≤ 128.

That will be followed by L pairs of lines.
The first line in each pair contains the syllables of that line of the song. A syllable is a string of

any non-whitespace characters. Adjacent syllables in the input will be separated by a single blank.
These lines will be at most 80 characters long.

The second line in each pair will consist of positive integers, one per syllable from the first line
of the pair, indicating the time allocated to the corresponding syllables. These will be in the range
1 . . . 128.

Output
For each dataset, print 2L lines of output corresponding to two voices in a round, as described

above.

Example
For the input:

2 8
Hot cross buns! = Hot cross buns! =
2 2 2 2 2 2 2 2
One a pen- ny, Two a pen- ny, Hot cross buns! =
1 1 1 1 1 1 1 1 2 2 2 2

the output should be

Hot+cross+buns!+=+Hot+cross+buns!+=
++++++++++++++++++Hot+cross+buns!+=
One+a+pen-+ny,+Two+a+pen-+ny,+Hot+++cross++++buns!+=
Hot+++cross++++buns!+=++++++++One+a+pen-+ny,+Two+a+pen-+ny,

For the input:

5 32
And ev- ry-
1 1 1
one neath a vine and fig tree, = shall live in
2 1 1 2 2 2 2 1 1 1 1
peace and un- a- fraid. =
2 2 2 2 6 2
And in- to plow shares beat their swords.

Nov. 5, 2016 2016 Mid-Atlantic Regional Programming Contest Page 7 of 19

Problem B: Around and Around We Go
2 1 1 2 2 2 2 4
Na- tions shall learn war no more =
2 2 2 2 2 2 1 3

the output should be

And+ev-+ry-

one+neath+a+vine+and+fig+tree,+=+shall+live+in

peace+and+un-+a-+fraid.+++=
++++++++++++++++++++++And+ev-+ry-
And+in-+++to+plow+shares+beat+their+swords.
one+neath+a++vine+and++++fig++tree,+=+shall+live+in
Na-+++tions+shall+learn+war+no+more+=
peace+and+++un-+++a-++++fraid.+++++++=

Nov. 5, 2016 2016 Mid-Atlantic Regional Programming Contest Page 8 of 19

Problem C: Buggy Robot

Problem C: Buggy Robot
There is a robot in a 2D grid. The grid consists of obstacles, and there is exactly one cell that is

the exit. The robot will exit the grid if it ever reaches the exit cell. Empty cells are denoted as ‘.’,
the robot’s initial position is denoted as ‘R’, obstacles are denoted as ‘#’, and the exit is denoted as
‘E’.

You can program the robot by sending it a series of commands. The series of commands is a
string consisting of characters ‘L’ (move one square left), ‘U’ (move one square up), ‘R’ (move
one square right), or ‘D’ (move one square down). If the robot would run into an obstacle or off the
edge of the grid, it will ignore the command (but it will continue onto future commands, if there
are any).

Your friend sent a series of commands to the robot, but unfortunately, the commands do not
necessarily take the robot to the exit.

You would like to fix the string so that the robot will touch the exit square. (Note: once the
robot reaches the exit, it stops, even if there are more commands in the string.)

You can fix the string with a sequence of operations. There are two operations: inserting a
command or deleting a command. What is the minimum number of operations you would need to
fix the program?
Input

The first line of the input contains the two integers N and M , 1 ≤ N,M ≤ 50, which are the
width and height of the grid.

The next N lines will contain a string of exactly M characters, each of which is ‘.’ (empty),
‘R’ (the robot), ‘#’ (an obstacle), or ‘E’, the exit. There will be exactly one ‘R’ and one ‘E’ in the
grid, and it will always be possible to navigate the robot to the exit.

The last line contains a string s (1 ≤ |s| ≤ 50) of commands. The string s will consist only of
‘L’, ‘R’, ‘U’, and ‘D’.

Output
Print one line containing the single integer indicating the minimum number of operations nec-

essary to fix the command string so that the robot makes it to the exit.

Nov. 5, 2016 2016 Mid-Atlantic Regional Programming Contest Page 9 of 19

Problem C: Buggy Robot
Example

Sample Input Sample Output
3 3
R..
.#.
..E
LRDD

1

2 4
R.#.
#..E
RRUUDDRRUUUU

0

In the first example, we can insert the character R into the middle to get “LRRDD”.
In the second example, the robot will touch the exit cell during the given path, so we don’t need

to do anything.

Nov. 5, 2016 2016 Mid-Atlantic Regional Programming Contest Page 10 of 19

Problem D: Enclosure Area

Problem D: Enclosure Area
No one really knew how rich old Mr. Miserly really was. People used to joke about how he

must own half the town, but it was not until he passed away that people discovered that he was the
sole owner of the town’s banks. Since most of the homes and small businesses had mortgages with
those banks, he really did own half the town.

No one really knew how civic-minded Mr. Miserly really was. But the day after his will was
read, the townsfolk woke to the sound of workmen hammering wooden stakes into the ground near
every building that was partly owned by the banks. Each family found, in their mailbox, a small
green flag and a leaflet with these instructions:

From: the executors of the Miserly estate

You may tie this flag to any of the wooden stakes in the town. At noon, the execu-
tors will tie strings from one flagged stake to the next, forming the shortest path they
can make that encloses all the flagged stakes. [The high school’s Geometry teacher
tried to explain to people that this formed a convex polygon, but no one paid much
attention.]

Any building inside the perimeter will have its mortgage paid off by the Miserly
estate.

Furthermore, the estate will donate $1 to the Municipal Fund for every square
ILMU1 of area within the enclosed perimeter.

Most of the townsfolk never got as far as reading the final paragraph before rushing off to place
their flag near their home or family business.

You, however, held on to your flag. You now have the last flag. You can see that your own
home is safe, surrounded by the flags of your neighbors. So your thoughts turn to the donation to
the Municipal Fund. You want to place your flag where it will increase the enclosed area to the
largest possible value.

Input
The first line of input contains two integers n and k, where n is the number of stakes in the

forest and k is the number of stakes with flags already tied to them. 3 ≤ k < n ≤ 100,000
The next n lines each have two integers x and y, −1,000,000,000 ≤ x, y ≤ 1,000,000,000,

specifying the location of each stake, measured in ILMUs. The first k of these are the stakes
already flagged by the townspeople.

• Assume that any two stakes can be joined by a straight length of string, ignoring any possible
interference from buildings, trees, or other physical objects.

• There may be unflagged stakes both within and without the current perimeter.

• No three stakes will occupy co-linear locations.
1Imaginary Linear Measurement Unit

Nov. 5, 2016 2016 Mid-Atlantic Regional Programming Contest Page 11 of 19

Problem D: Enclosure Area
Output

Print a single line containing a floating point number denoting the maximum area you can
achieve by gaining flagging one additional stake. Print this to one decimal place of precision.

Time Limit
Solutions to this problem must run in no more than 6 seconds.

Example
Sample Input Sample Output
5 3
-5 -5
-5 5
5 -5
-4 6
5 5

100.0

10 9
4 3
3 8
7 9
8 1
9 9
1 0
9 2
10 4
5 3
7 1

58.5

Nov. 5, 2016 2016 Mid-Atlantic Regional Programming Contest Page 12 of 19

Problem E: Toys and Triangles

Problem E: Toys and Triangles
Alaa fondly remembers playing with a building toy when she was a child. It consisted of

segments that could be fastened at each end. A game she liked to play was to start with one
segment as a base, placed flat against a straight wall. Then she repeatedly added on triangles, with
one edge of the next triangle being a single segment already in place on her structure, and the other
two sides of the triangle being newly added segments. Of course no segment could go through the
wall, but she did allow newly added segments to cross over already placed ones. Her aim was to
see how far out from the wall she could make her structure go.

She would experiment, building different ways with different combinations of some or all of
her pieces. It was an easy, boring task if all the segments that she used were the same length! It
got more interesting if she went to the opposite extreme and started from a group of segments that
were all of distinct lengths.

For instance, with segments of length 42, 40, 32, 30, 25, 18 and 15, the figures above show
some of the structures she could have built, including the one with the maximum distance.

Nov. 5, 2016 2016 Mid-Atlantic Regional Programming Contest Page 13 of 19

Problem E: Toys and Triangles
Now looking back as a Computer Science student, Alaa wondered how well she did, and de-

cided to write a program to check what the maximum distance really is. This is also the challenge
for you.

Input
The input is a single line of positive integers,

n L1 L2 . . . Ln

Here n is the number of segments, 3 ≤ n ≤ 10, and then the lengths of the segments are listed
in strictly decreasing order. Each segment length is less than 100. At least one triangle may be
constructed.

Output
Print the maximum distance that one of Alaa’s structures can go from the wall to two decimal

digits of precision.

Time Limit
Solutions to this problem must run in no more than 5 seconds.

Examples
Sample Input Sample Output
3 50 40 30 40.00
4 50 40 30 29 40.00
7 42 40 32 30 25 18 15 66.95

Nov. 5, 2016 2016 Mid-Atlantic Regional Programming Contest Page 14 of 19

Problem F: Islands

Problem F: Islands
You are mapping a faraway planet using a satellite.
The planet’s surface can be modeled as a grid. Your satellite has captured an image of the

surface. Each grid square is either land (denoted as ‘L’), water (denoted as ‘W’), or covered by
clouds (‘C’). Clouds mean that the surface could either be land or water, but you can’t tell.

An island is a maximal region of land where every grid cell in the island is reachable from
every other by a path that only goes up, down, left or right.

Given an image, determine the minimum number of islands that is consistent with the given
information.
Input

The first line of input contains two integers, n and m (1 ≤ n,m ≤ 50), which are the height
and width of the image. The next n lines will each contain exactly m characters, consisting only
of ‘L’, ‘W’ and ‘C’, as explained above.

Output
Print one line of output containing an integer denoting the minimum number of islands possible.

Examples
Sample Input Sample Output
4 5 0
CCCCC
CCCCC
CCCCC
CCCCC
3 2 1
LW
CC
WL

In the first example, the planet could be all water under the clouds.
In the second, the planet beneath the clouds could look like

LW
LL
WL

Nov. 5, 2016 2016 Mid-Atlantic Regional Programming Contest Page 15 of 19

Problem G: Ghostbusters 2

Problem G: Ghostbusters 2
In the 1984 Ghostbusters2 movie, the protagonists use proton pack weapons that fire laser

streams. This leads to the following memorable dialog between scientists Peter Venkman and
Egon Spengler:

Spengler: “There’s something very important I forgot to tell you.
Venkman: What?
Spengler: Don’t cross the streams.
Venkman: Why?
Spengler: It would be bad.
Venkman: I’m fuzzy on the whole good/bad thing. What do you mean, “bad”?
Spengler: Try to imagine all life as you know it stopping instantaneously and every
molecule in your body exploding at the speed of light.
Venkman: Right. That’s bad. Okay. All right. Important safety tip”

In the 30+ years since that time, there have been several technical advances in their weapons
systems. They are currently trying out a new prototype:

• The streams have been polarized, firing either horizontally or vertically. There is no longer
any danger if streams having opposite polarity cross each other. However, there will still be
catastrophic results if two streams having the same orientation in any way touch each other.

• The streams do not affect living creatures. A stream may pass through one of the ghostbusters
with no ill effects.

• A weapon now simultaneously fires its streams in opposite directions.

More specifically, a weapon has an integer power P and when fired will reach locations P
units to the left and P units to the right of the ghostbuster, if fired horizontally, or P units
above and below the ghostbuster if fired vertically.

When stationed at their positions, the ghostbusters can communicate to decide who will fire
horizontally and who will fire vertically. They will all use the same power value P and would like
to use as much power as possible without causing a catastrophe.

2“Ghostbusters” is a registered trademark of Columbia Pictures Industries, Inc., and the dialog quoted on this page
is c© Columbia Pictures Industries, Inc.

Nov. 5, 2016 2016 Mid-Atlantic Regional Programming Contest Page 16 of 19

Problem G: Ghostbusters 2

As an example, the plot on the left shows a configuration of ghostbusters in which an arbitrarily
large power value can be used, so long as the ghostbusters coordinate their orientations. The plot
on the right shows a configuration in which there is an orientation to allow power level 3, but for
which no orientation allows power level 4. (Notice that the streams of the bottom-left and bottom-
right ghostbusters would touch if using power level 4 with that same orientation of streams.)

Input
The first line contains an integer N , such that 1 ≤ N ≤ 1000, indicating the number of

ghostbusters. Following that are N lines, each containing integers x and y which describe the
location of one ghostbuster, such that 0 ≤ x, y ≤ 1,000,000. No two ghostbusters are at the same
location.

Output
If the ghostbusters can use arbitrarily large power without catastrophe, print UNLIMITED.

Otherwise print the largest integer power value that may be safely used with appropriately chosen
orientations.

Time Limit
Solutions to this problem must run in no more than 10 seconds.

Nov. 5, 2016 2016 Mid-Atlantic Regional Programming Contest Page 17 of 19

Problem G: Ghostbusters 2
Examples

Sample Input Sample Output
4
5 4
9 4
5 6
9 6

UNLIMITED

6
3 3
7 3
11 3
3 5
7 5
11 5

3

6
0 0
1 0
2 0
0 1
1 1
2 1

0

Nov. 5, 2016 2016 Mid-Atlantic Regional Programming Contest Page 18 of 19

Problem H: Painting the Floodwall

Problem H: Painting the Floodwall
The town of South Riverside has a long floodwall to protect the residents against occasional

rising waters from the nearby Little Muddy river. It’s very functional, but also a bit of an eyesore.
The town has decided to spruce it up by staging a competition for local artists to paint murals on

sections of the wall. Artists have submitted applications for the contest, in which they have spec-
ified not only how long a section of wall they want to paint but also, based upon the surrounding
scenery, where along the wall they would like to place their mural.

Obviously, the artists’ work cannot overlap, so there is a possibility that not all artists’ applica-
tions can be accepted. On the other hand, the town would like to see as much of the wall painted
as possible.

Find the combination of artists whose applications can be accepted to maximize the amount
of the wall painted without allowing any artists’ work to overlap. A mural that starts at the same
coordinate at which another mural stops is not considered to overlap.
Input

Input will begin with a line containing an integer N denoting the number of artists whose have
submitted applications. 1 ≤ N ≤ 200,000

This will be followed by N lines, each containing two integers x0 and x1, 0 ≤ x0 ≤ x1 ≤ 1018,
denoting a starting and ending position (inclusive) for a proposed mural.

Output
Print a single line containing the maximum total length of the fence that can be painted without

allowing any two artists’ work to overlap.

Example
Sample Input Sample Output
3 200
100 200
190 210
200 300
5 13
0 5
12 18
4 14
7 9
17 18

The second example reflects a decision to accept the applications to paint portions 0 . . . 5,
7 . . . 9, and 12 . . . 18.

Nov. 5, 2016 2016 Mid-Atlantic Regional Programming Contest Page 19 of 19

