
icpc north
america
sponsor

icpc global
programming
tools sponsor

2017 ACM ICPC Mid-Atlantic USA Regional Contest

2017 ACM ICPC
Mid-Atlantic North America

Programming Contest

Coachs’ Handout

This is a courtesy copy of the problem set for the Mid-Atlantic Regional contest.

Important!!
The creation of this problem set was a collaboration among multiple Regional Contests

scheduled for November 11. These contests will be starting at different times and taking place
in different time zones.

In deference to the later-starting contests, please refrain from emailing, blogging, posting,
tweeting, or otherwise making any public comments about this problem set until November 12.

Nov. 11, 2017



And now, a word from the head judge
Without a team of creative volunteers, there would be no problem set for this contest each year. It’s not

too early to start thinking about the 2018 contest!
We do require that problem authors not be coaches of or otherwise directly associated with a participating

team. But if you are a team coach and have a colleague who might be interested in contributing, please drop
a word to them. If you have a creative team member who will be an alumnus or alumna next year, you might
do the same.

Anyone interested in participating as a member of the authoring team for 2018 can send their contact
information to this year’s head judge for the region, Steven Zeil, at zeil@cs.odu.edu.

Problem Problem Name Balloon Color
A Star Arrangement Orange
B Security Badge Green
C Purple Rain Silver
D Avoiding Airports Pink
E Rainbow Roads Red
F Spinning Up Palindromes Yellow
G Long, Long Strings Black
H Haiku Formatting Purple

Nov. 11, 2017 2017 Mid-Atlantic Regional Programming Contest Page 1 of 22



Problem A: Star Arrangements

Problem A: Star Arrangements
The recent vote in Puerto Rico favoring United States statehood has made flag

makers very excited. An updated flag with 51 stars rather than the current one with
50 would cause a huge jump in U.S. flag sales. The current pattern for 50 stars is
five rows of 6 stars, interlaced with four offset rows of 5 stars. The rows alternate
until all stars are represented.

* * * * * *
* * * * *
* * * * * *
* * * * *
* * * * * *
* * * * *
* * * * * *
* * * * *
* * * * * *

This pattern has the property that adjacent rows differ by no more than one star.
We represent this star arrangement compactly by the number of stars in the first two
rows: 6,5.

A 51-star flag that has the same property can have three rows of 9 stars, interlaced with three rows of 8
stars (with a compact representation of 9,8). Conversely, if a state were to leave the union, one appealing
representation would be seven rows of seven stars (7,7).

A flag pattern is visually appealing if it satisfies the following conditions:

• Every other row has the same number of stars.

• Adjacent rows differ by no more than one star.

• The first row cannot have fewer stars than the second row.

Your team sees beyond the short-term change to 51 for the US flag. You want to corner the market on
flags for any union of three or more states. Given the number S of stars to draw on a flag, find all possible
visually appealing flag patterns.

Input

The input consists of a single line containing the integer S (3 ≤ S ≤ 32 767).

Output

On the first line, print S, followed by a colon. Then, for each visually appealing flag of S stars, print its
compact representation, one per line.

This list of compact representations should be printed in increasing order of the number of stars in the
first row; if there are ties, print them in order of the number of stars in the second row. The cases 1-by-S
and S-by-1 are trivial, so do not print those arrangements.

The compact representations must be printed in the form “x,y”, with exactly one comma between x
and y and no other characters.

Nov. 11, 2017 2017 Mid-Atlantic Regional Programming Contest Page 2 of 22



Problem A: Star Arrangements
Examples

Example 1
Sample Input

3

Sample Output

3:
2,1

Example 2
Sample Input

50

Sample Output

50:
2,1
2,2
3,2
5,4
5,5
6,5
10,10
13,12
17,16
25,25

Example 3
Sample Input

51

Sample Output

51:
2,1
3,3
9,8
17,17
26,25

Nov. 11, 2017 2017 Mid-Atlantic Regional Programming Contest Page 3 of 22



Problem B: Security Badge

Problem B: Security Badge

The home office of Labyrinthian Inc. has installed a new system of security
badges and electronic door locks. Each badge is assigned an ID number, and the
idea was that electronic locks on each door should allow access only to personnel
whose ID number indicated that they had appropriate security clearance to enter that
room, hallway, closet, or whatever lay on the other side of the door.

The contract for the lock system, however, was put out to the lowest bidder, who
clearly misunderstood the intention. Instead of each lock storing a list of permit-
ted ID numbers, instead each lock stores exactly two numbers, a lower and upper
bound, and permits passage to badges whose number lies between those bounds. For
example, a lock keyed as (25, 29) would pass only badges 25, 26, 27, 28, and 29.

Complicating the matter is the fact that lock on each side of the door can be keyed differently, so a
person who is able to pass through the door in one direction might not be able to return once the door has
closed behind them.

The results have been frustrating (and occasionally entertaining – videos of everyone in the company
trying to find a way to the cafeteria at noon have gone viral on social media).

It has become a major task, when hiring or promoting any employee, to find a badge number that will
actually get them from the front door to their new office.

Write a program to determine how many badge numbers will permit passage from one given room to
another.

Input

The first line of input will contain integers N , L, and B, denoting the number of rooms, of locks, and of
badge numbers, respectively. 2 ≤ N ≤ 1 000, 1 ≤ L ≤ 5 000, 1 ≤ B ≤ 109

The next line of input will contain two integers, S and D, 1 ≤ S ≤ N , 1 ≤ D ≤ N , S 6= D, denoting
the starting and destination rooms that we are interested in.

This is followed by L lines, each describing a lock as four integers:

a b x y

indicating that a lock permits passage from room a to room b (but not from b to a) for badges numbered
from x to y, inclusive. It is guaranteed that 1 ≤ a, b ≤ N , a 6= b, 1 ≤ x ≤ B, 1 ≤ y ≤ B, x ≤ y, and no
(a, b) pair will occur more than once, although both (a, b) and (b, a) may occur within separate lines.

Output

Print a single line indicating the number of badge ID numbers permitting passage from room S to room
D

Time limit: solutions should complete in no more than 5 CPU seconds

Nov. 11, 2017 2017 Mid-Atlantic Regional Programming Contest Page 4 of 22



Problem B: Security Badge
Examples

Example 1
Sample Input

4 5 10
3 2
1 2 4 7
3 1 1 6
3 4 7 10
2 4 3 5
4 2 8 9

Sample Output

5

Example 2
Sample Input

4 5 9
1 4
1 2 3 5
1 3 6 7
1 4 2 3
2 4 4 6
3 4 7 9

Sample Output

5

Nov. 11, 2017 2017 Mid-Atlantic Regional Programming Contest Page 5 of 22



Problem C: Purple Rain

Problem C: Purple Rain

Purple rain falls in the magic kingdom of Linearland which is a straight, thin
peninsula.

On close observation however, Prof. Nelson Rogers finds that actually it is a mix
of Red and Blue drops.

In his zeal, he records the location and color of the raindrops in different lo-
cations along the peninsula. Looking at the data, Professor Rogers wants to know
which part of Linearland had the “least” purple rain.

After some thought, he decides to model this problem as follows. Divide the
peninsula into n sections and number them West to East from 1 to n. Then, describe
the raindrops as a sequence of R and B, depending on whether the rainfall in each
section is primarily red or blue. Finally, find a subsequence of where the difference between the number of
R and the number of B is maximized.

Input

The input consists of a single line containing a string of n characters (1 ≤ n ≤ 105), describing the
color of the raindrops in sections 1 to n.

It is guaranteed that the string consists of uppercase ASCII letters ‘R’ and ‘B’ only.

Output

Print, on a single line, two space-separated integers that describe the starting and ending positions of the
part of Linearland that had the least purple rain.

If there are multiple possible answers, print the one that has the Westernmost (smallest-numbered) start-
ing section. If there are multiple answers with the same Westernmost starting section, print the one with the
Westernmost ending section.

Examples

Example 1
Sample Input

BBRRBRRBRB

Sample Output

3 7

Example 2
Sample Input

BBRBBRRB

Nov. 11, 2017 2017 Mid-Atlantic Regional Programming Contest Page 6 of 22



Problem C: Purple Rain
Sample Output

1 5

Nov. 11, 2017 2017 Mid-Atlantic Regional Programming Contest Page 7 of 22



Problem D: Avoiding Airports

Problem D: Avoiding Airports

David is looking to book some travel over the world. There are n countries that
he can visit, and m flights that are available. The ith flight goes from country ai to
country bi. It departs at time si, and lands at time ei.

David is currently at the airport in country 1, and the current time is 0, and he
would like to travel country n. He does not care about the total amount of time
needed to travel, but he really hates waiting in the airport. If he waits t seconds in
an airport, he gains t2 units of frustration. Help him find an itinerary that minimizes
the sum of frustration.

Input

The first line of input contains two space-separated integers n and m (1 ≤ n,m ≤ 200 000).
Each of the next m lines contains four space-separated integers ai, bi, si, and ei (1 ≤ ai, bi ≤ n;

0 ≤ si ≤ ei ≤ 106).
A flight might have the same departure and arrival country.
No two flights will have the same arrival time, or have the same departure time. In addition, no flight

will have the same arrival time as the departure time of another flight. Finally, it is guaranteed that there will
always be a way for David to arrive at his destination.

Output

Print, on a single line, the minimum sum of frustration.

Time limit: solutions should complete in no more than 5 CPU seconds.

Examples

In the first sample, it is optimal to take this sequence of flights:

• Flight 5. Goes from airport 1 to airport 2, departing at time 3, arriving at time 8.

• Flight 3. Goes from airport 2 to airport 1, departing at time 9, arriving at time 12.

• Flight 7. Goes from airport 1 to airport 3, departing at time 13, arriving at time 27.

• Flight 8. Goes from airport 3 to airport 5, deparing at time 28, arriving at time 100.

The frustration for each flight is 32, 12, 12, and 12, respectively. Thus, the total frustration is 12.
Note that there is an itinerary that gets David to his destination faster. However, that itinerary has a

higher total frustration.

Nov. 11, 2017 2017 Mid-Atlantic Regional Programming Contest Page 8 of 22



Problem D: Avoiding Airports

Example 1
Sample Input

5 8
1 2 1 10
2 4 11 16
2 1 9 12
3 5 28 100
1 2 3 8
4 3 20 21
1 3 13 27
3 5 23 24

Sample Output

12

Example 2
Sample Input

3 5
1 1 10 20
1 2 30 40
1 2 50 60
1 2 70 80
2 3 90 95

Sample Output

1900

Nov. 11, 2017 2017 Mid-Atlantic Regional Programming Contest Page 9 of 22



Problem E: Rainbow Roads

Problem E: Rainbow Roads

The Transit Authority of Greater Podunk is planning its holiday decora-
tions. They want to create an illuminated display of their light rail map in
which each stretch of track between stations can be illuminated in one of sev-
eral colors.

At periodic intervals, the controlling software will choose two stations at
random and illuminate all of the segments connecting those two stations. By
design, for any two stations on the Greater Podunk Railway, there is a unique
path connecting the two.

For maximum color and cheer, the display designers want to avoid having
two adjacent segments of track lighting up in the same color. They fear, how-
ever, that they may have lost track of this guideline in the process of building
the display. One of them has gone so far as to propose a means of measuring
just how far from that ideal they may have fallen.

Description

You are given a tree with n nodes (stations), conveniently numbered from
1 to n. Each edge in this tree has one of n colors. A path in this tree is called a rainbow if all adjacent edges
in the path have different colors. Also, a node is called good if every simple path with that node as one of
its endpoints is a rainbow path. (A simple path is a path that does not repeat any vertex or edge.)

Find all the good nodes in the given tree.

Input

The first line of input contains a single integer n (1 ≤ n ≤ 50 000).
Each of the next n − 1 lines contains three space-separated integers ai, bi, and ci (1 ≤ ai, bi, ci ≤ n;

ai 6= bi), describing an edge of color ci that connects nodes ai and bi.
It is guaranteed that the given edges form a tree.

Output

On the first line of the output, print k, the number of good nodes.
In the next k lines, print the indices of all good nodes in numerical order, one per line.

Time limit: solutions should complete in no more than 3 CPU seconds

Examples

(For the first sample, node 3 is good because all paths that have node 3 as an endpoint are rainbow. In
particular, even though the path 3→ 4→ 5→ 6 has two edges of the same color (i.e. 3→ 4, 5→ 6), it is
still rainbow because these edges are not adjacent.)

Nov. 11, 2017 2017 Mid-Atlantic Regional Programming Contest Page 10 of 22



Problem E: Rainbow Roads

Example 1
Sample Input

8
1 3 1
2 3 1
3 4 3
4 5 4
5 6 3
6 7 2
6 8 2

Sample Output

4
3
4
5
6

Example 2
Sample Input

8
1 2 2
1 3 1
2 4 3
2 7 1
3 5 2
5 6 2
7 8 1

Sample Output

0

Nov. 11, 2017 2017 Mid-Atlantic Regional Programming Contest Page 11 of 22



Problem E: Rainbow Roads

Example 3
Sample Input

9
1 2 2
1 3 1
1 4 5
1 5 5
2 6 3
3 7 3
4 8 1
5 9 2

Sample Output

5
1
2
3
6
7

Example 4
Sample Input

10
9 2 1
9 3 1
9 4 2
9 5 2
9 1 3
9 6 4
1 8 5
1 10 5
6 7 9

Sample Output

4
1
6
7
9

Nov. 11, 2017 2017 Mid-Atlantic Regional Programming Contest Page 12 of 22



Problem F: Spinning Up Palindromes

Problem F: Spinning Up Palindromes
“Sabotage!” exclaimed J.R. Diddly, president and founder

of Diddly Widgets Inc.
“Vandalism, perhaps. Nothing’s actually been damaged.”

responded Robert Lackey, the chief accountant.
Both were staring up at the large counter suspended above

the factory floor, a counter that had faithfully recorded the
number of widgets that had come off the assembly line since
the factory was opened. But someone had changed the number
being displayed so that it formed...

“It’s a palindrome.” said Lackey. “It reads the same forwards as backwards.”
“What I don’t understand,” said Diddly, “is why our security guards didn’t catch the vandals during their

regular sweeps. It must have taken them hours to click forward to this new number, one step at a time.”
“No.” replied Lackey. “Although we only advance the rightmost digit each time a new widget is built,

it’s possible to spin any of the digits. With a little planning, this might have taken only a few seconds.”

Description

Consider a digital counter consisting of k wheels, each showing a digit from 0 to 9. Each wheel is
mounted so that it can advance to the next digit in a single step, e.g., from 3 to 4, or from 8 to 9.

It is also possible to advance from digit 9 to digit 0. However, when this happens, the wheel on its
immediate left will also advance to the next digit automatically. This can have a cascade effect on multiple
wheels to the left, but they all happen in a single step.

Given the current setting of the counter, find the smallest number of steps until one can reach a palin-
drome. The palindrome must respect leading zeros, e.g., 0011 is not a palindrome.

For example, for input 610, it takes four steps. This can be done by incrementing the 6 wheel four
times, resulting in 010.

Input

Input will consist of single line containing an integer of 1 to 40 digits. The number of digits in the input
is the number of wheels on the counter. Numbers may contain leading zeros.

Output

Print a single line of output containing one integer, the minimum number of wheel advances required to
produce a palindrome.

Examples

Example 1
Sample Input

0

Nov. 11, 2017 2017 Mid-Atlantic Regional Programming Contest Page 13 of 22



Problem F: Spinning Up Palindromes
Sample Output

0

Example 2
Sample Input

009990001

Sample Output

3

Example 3
Sample Input

29998

Sample Output

5

Example 4
Sample Input

610

Sample Output

4

Example 5
Sample Input

981

Sample Output

2

Example 6
Sample Input

9084194700940903797191718247801197019268

Nov. 11, 2017 2017 Mid-Atlantic Regional Programming Contest Page 14 of 22



Problem F: Spinning Up Palindromes
Sample Output

54

Nov. 11, 2017 2017 Mid-Atlantic Regional Programming Contest Page 15 of 22



Problem G: Long Long Strings

Problem G: Long Long Strings

To store DNA sequences your company has developed a Long-
LongString class that can store strings with up to ten billion characters.
The class supports two basic operations:
• Ins(p, c): Insert the character c at position p.

• Del(p): Delete the character at position p.

A DNA editing program is written as a series of Ins and Del op-
erations. Your job is to write a program that compare two DNA editing
programs and determine if they are identical, i.e., when applied to any
sufficiently long string, whether the end result is the same.

For example:

• Del(1) Del(2) and Del(3) Del(1) are identical.

• Del(2) Del(1) and Del(1) Del(2) are different.

• An empty sequence and Ins(1, X) Del(1) are identical.

• Ins(14, B) Ins(14, A) and Ins(14, A) Ins(15, B) are identical.

• Ins(14, A) Ins(15, B) and Ins(14, B) Ins(15, A) are different.

Input

Input will consist of the descriptions of two DNA editing programs.
Each program will consist of some number of operations (between 0 and 2 000). Each operation will be

given on its own line. The first character of the line will be D for a Del operation, I for an Ins operation,
or E marking the end of the program.

A Del operation will have the D character, followed by a space, and then a single integer between 1 and
1010, indicating the character position to delete. All characters after this deleted character will be shifted
one position lower.

An Ins operation will have the I character, followed by a space, and then a single integer between 1
and 1010, indicating the location to insert the new character; all pre-existing characters with this index and
higher will be shifted one position higher. Following this integer will be another space and then an uppercase
alphabetic character that is the character to insert.

Output

If the two programs are identical, print “0” on a single line (without quotation marks). Otherwise, print
“1” on a single line (without quotation marks).

Time limit: solutions should complete in no more than 3 CPU seconds

Nov. 11, 2017 2017 Mid-Atlantic Regional Programming Contest Page 16 of 22



Problem G: Long Long Strings
Examples

Example 1
Sample Input

D 1
D 2
E
D 3
D 1
E

Sample Output

0

Example 2
Sample Input

D 2
D 1
E
D 1
D 2
E

Sample Output

1

Example 3
Sample Input

I 1 X
D 1
E
E

Sample Output

0

Nov. 11, 2017 2017 Mid-Atlantic Regional Programming Contest Page 17 of 22



Problem G: Long Long Strings

Example 4
Sample Input

I 14 B
I 14 A
E
I 14 A
I 15 B
E

Sample Output

0

Example 5
Sample Input

I 14 A
I 15 B
E
I 14 B
I 15 A
E

Sample Output

1

Nov. 11, 2017 2017 Mid-Atlantic Regional Programming Contest Page 18 of 22



Problem H: Haiku Formatting

Problem H: Haiku Formatting
A haiku is a three-line poem in which the first and third lines contain 5 syllables

each, and the second line contains 7 syllables.
An example of a haiku is:

Blue Ridge mountain road.
Leaves, glowing in autumn sun,
fall in Virginia.

Write a program to examine a line of English text and and attempt to render it
as a haiku. This will require counting the syllables in the words of the text, which
should be done according to the following rules:

• A word consists of a non-empty, maximal string of zero or more alphabetic
characters (upper and/or lower-case) followed by zero or more non-blank,
non-alphabetic characters.

– Upper/lower case distinctions are ignored for the purpose of counting syllables, but must be
retained in the final output.

– Non-alphabetic characters are ignored for the purpose of counting syllables, but must be retained
in the final output.

• The characters ‘A’, ‘E’, ‘I’, ‘O’, ‘U’, and ‘Y’ are vowels. All other alphabetic
characters are consonants.

Exceptions to this rule:

– The character sequence “QU” is considered to be a single consonant.
– The letter ‘Y’ is considered to be a consonant if it is immediately followed by one of the other

vowels.

• Every word has at least one syllable.

For example, “Fly”,“I”, ”!?”, and “Ssshhh!” are words of one syllable.

• Each (maximal) string of one or more consonants with at least one vowel to
either side indicates a division into separate syllables.

For example, “strong” has one syllable, “stronger” has 2, and “bookkeeper”
has 3. “player” has two syllables (because the ‘y’, being followed by an ‘e’,
is considered a consonant).

Exceptions to this rule are:

– An ‘E’ appearing as the last alphabetic character in a word is silent and should be ignored unless
the next-to-last alphabetic character is an ‘L’ and the character immediately before that is another
consonant.
For example, “cake”, “ale” and “pale” have one syllable. “able” has two.

– An ‘ES’ sequence at the end of the alphabetic sequence in a word does not add a syllable unless
immediately preceded by two or more consonants.
For example, “ales” and “pales” have one syllable. “witches” and “verses” have two.

Nov. 11, 2017 2017 Mid-Atlantic Regional Programming Contest Page 19 of 22



Problem H: Haiku Formatting
Input

Input will consist of a single line of text consisting of a sequence of one or more words (as defined
above) separated by single blanks.

The total line length will not exceed 200 characters.

Output

If the words in the input line can be divided into a haiku, then print the haiku as three lines of output.

• Each line should be left-justified.

• A single space should separate each pair of words within a line.

• Upper/lower casing from the input should be preserved.

• Non-alphabetic characters terminating each word should be preserved.

• A word cannot be split across multiple lines.

If the words in the input cannot be divided into a haiku, print the line of input with no changes.

Examples

Example 1
Sample Input

Blue Ridge mountain road. Leaves, glowing in autumn sun, fall in Virginia.

Sample Output

Blue Ridge mountain road.
Leaves, glowing in autumn sun,
fall in Virginia.

Example 2
Sample Input

Who would know if we had too few syllables?

Sample Output

Who would know if we had too few syllables?

Nov. 11, 2017 2017 Mid-Atlantic Regional Programming Contest Page 20 of 22



Problem H: Haiku Formatting

Example 3
Sample Input

International contest- motivation high Programmers have fun!.

Sample Output

International
contest- motivation high
Programmers have fun!.

Example 4
Sample Input

Programming contest is stressing us all out. International pain.

Sample Output

Programming contest is stressing us all out. International pain.

Nov. 11, 2017 2017 Mid-Atlantic Regional Programming Contest Page 21 of 22



22


