
2018 ICPC Mid-Atlantic USA Regional Contest

DO NOT OPEN TILL CONTEST BEGINS

2018 ICPC
Mid-Atlantic North America

Programming Contest

Problem Set

Nov. 10, 2018

Welcome to the 2018 ICPC Mid-Atlantic Regional.
There are eight (8) problems in the packet, labeled A–H. These problems are NOT sorted by difficulty.

As a team’s solution is judged correct, the team will be awarded a balloon. The balloon colors are as follows:

Problem Problem Name Balloon Color
A Lost is Close to Lose Orange
B Orphan Backups Green
C Collusion on Two Wheels Silver
D Find Poly Pink
E Neutral Ground Red
F Picking Up the Dice Yellow
G Playing the Slots Black
H Tightly Packed Purple

Please be sure that you have read and understand the Contest Guide and Rules, provided separately.
Good luck, and HAVE FUN!!!

Nov. 10, 2018 2018 Mid-Atlantic Regional Programming Contest Page 1 of 20

Problem A: Lost is Close to Lose

Problem A: Lost is Close to Lose

Better Documents Inc. is contemplating the next generation of
word processors. Now, nearly every word processor includes a Spell
Checker. BDI, however, is looking forward to replacing that with a
true Typo Checker. We’ve all been caught, after relying on a spell
checker, by typing mistakes (“typos”) that just happen to wind up as a
correctly spelled word, just not the word we intended. BDI hopes to
use AI to determine when a word’s context suggests that it is out of
place and probably should have been a different, but similarly spelled, word.

As a first step in this process, they want to see how common such similar words really are in ordinary
text. Write a program to read in paragraphs of text and to produce a list of similarly spelled words occurring
in that text.

For the purpose of this program, a word is any maximal string of non-whitespace characters containing at
least one alphabetic character. Whitespace can be either blanks or line terminators (“\r” or “\n”). The core
of a word is what you have left after removing any non-alphabetic characters and replacing any upper-case
alphabetic characters to their lower-case equivalents.

Two words are considered to be similarly spelled if the core of one word can be converted to the core of
the other word by a single application of any one of the following transformations:

• Delete a single character.

• Insert a single alphabetic character.

• Replace a single character by a different alphabetic character.

• Transpose (exchange) any two adjacent characters.

Input

Input consists of 1 to 100 lines of text, followed by an end of input marker in the form of a line containing
only the string “***”.

Each line of text will contain 0 to 80 ASCII characters (not counting line terminators).

Output

For each word core in the text that has 1 or more similarly spelled words, print a line consisting of

1. That word core

2. A colon (“:”) followed by a blank

3. A list of all similarly spelled word cores (with no duplicates and not containing the core to the left of
the colons), in alphabetic order, separated by single spaces.

The lines printed should be in alphabetic order of the word cores to the left of the colon.
If there are no similarly spelled words in the input, print a single line containing the string “***”.

Nov. 10, 2018 2018 Mid-Atlantic Regional Programming Contest Page 2 of 20

Problem A: Lost is Close to Lose
Examples

Example 1
Sample Input

Lost is Close to Lose

"Better Documents Inc. wants to add Typo Checking in to the
next generation of word processors," he said.

Sample Output

close: lose
he: the
in: inc is
inc: in
is: in
lose: close lost
lost: lose
the: he

Example 2
Sample Input

The fox said, "When?"
"Not till 12 o’clock", replied the hen.
"That clock is stopped, it will never strike.", he said.

Sample Output

clock: oclock
he: hen the
hen: he when
is: it
it: is
oclock: clock
the: he
till: will
when: hen
will: till

Nov. 10, 2018 2018 Mid-Atlantic Regional Programming Contest Page 3 of 20

Problem A: Lost is Close to Lose

Example 3
Sample Input

There are no similar words
in this input set.

Sample Output

Nov. 10, 2018 2018 Mid-Atlantic Regional Programming Contest Page 4 of 20

Problem B: Orphan Backups

Problem B: Orphan Backups

GigantoCorp has a problem. They have removed all tape drives from their data
center and are doing all of their backups to disk storage. However, they seem to
have used more disk space than their backup software indicates should be in use.
They think that there are files on the backup storage that are not in the backup soft-
ware index. They would like your team to write a program to determine if there
are“orphan” files on the backup storage that are not in the index or “orphan” index
entries that have no corresponding files on the backup storage.

Your program will be provided with two lists – an index of valid backup image names, followed by a
list of backup file names.

Your program is to compare the two lists and determine if there are either backup images in the index
that have with no files or files that are not associated with any backup image in the index.

Input

Input is structured in two blocks.
The first is a list of backup images, one per line. Each backup image name consists of 1 to 32 printable

ASCII characters (no spaces). There may be up to 100 000 images. Each image name is unique, and they
may occur in any order.

The end of this block is signaled by an empty line.
The second block contains a list of backup file names, one per line, left justified. A backup file name

has the format
imageName integer type
where imageName is a backup image name in the format described above, integer is an integer in the

range 0 . . . 2 000 000 000 denoting the time in seconds since January 1, 1970 at 00:00 GMT (the “UNIX
epoch”), and type is an uppercase alphabetic character string of 1 to 6 characters. There may be up to
300 000 backup file names. File names are unique, and they may occur in any order.

The end of the second block is signaled by the end of file.

Output

First, print the list of files with no index entries, one per line, by printing the character “F”, a single
space, and then the file name.

After all the orphan files are printed, print the orphan index entries one per line by printing the character
“I”, a single space, and then the backup image name.

Entries in each list are to be printed in ASCII lexicographic order.
If every file has an index entry and every index entry has one or more files, print only a line containing

the string “No mismatches.”.

Nov. 10, 2018 2018 Mid-Atlantic Regional Programming Contest Page 5 of 20

Problem B: Orphan Backups
Example

Example 1
Sample Input

payroll.xls
projects.doc
employees.dat
products.txt

payroll.xls_1539199053_INCR
employees.dat_1539199053_INCR
payroll.xls_1539112653_INCR
employees.dat_1539112653_INCR
payroll.xls_1539026253_FULL
employees.dat_1539026253_FULL
customers.dat_1539026253_FULL

Sample Output

F customers.dat_1539026253_FULL
I products.txt
I projects.doc

Nov. 10, 2018 2018 Mid-Atlantic Regional Programming Contest Page 6 of 20

Problem C: Collusion on Two Wheels

Problem C: Collusion on Two Wheels

Two bicycle courier services have been competing in Metro City for many years,
stealing customers back and forth from one another. Recently, they have come to
realize that they would be better off if they could attract new customers instead.
A problem is that, over time, each company’s customers have become so widely
scattered across the city that some of their delivery times are unacceptably slow,
leading to customer dissatisfaction and a poor reputation.

The companies would like to divide up their current customers so that each company could run ads
saying “We guarantee delivery in no more than M minutes”, hoping to attract new customers. The streets of
Metro City are laid out on a grid, with buildings at integer coordinates of the grid. The couriers must travel
along those roads – they cannot cut through buildings. It takes one minute to travel one unit of distance in
the x or y direction.

Divide up the current customer base to minimize the longest delivery time required by either company
to have a courier travel from one customer of that company to any other customer of the same company.

* A delivery is considered to have been completed when the courier reaches the (x,y) address of the
customer. No time is counted for wandering the hallways of the customer’s building.

* It is acceptable that a courier traveling from one customer to another will pass by customers of the
same or of the other company. No extra time delay is accrued for riding past a customer.

* If it should happen that one company winds up with only a single customer, that company puts someone
on site to deliver messages within that one building. This is considered a zero delivery time.

Input

Input starts with 1 line containing an integer N, the number of customers to be divided up. 2 < N ≤
1 000.

This is followed by N lines, each containing a pair of integers x and y denoting the position of one
customer. 0 ≤ x, y ≤ 1 000.

Output

Print a single line containing the longest delivery time required by the two companies (i.e., the maximum
of the two longest delivery times offered by each company separately).

Nov. 10, 2018 2018 Mid-Atlantic Regional Programming Contest Page 7 of 20

Problem C: Collusion on Two Wheels
Examples

Example 1
Sample Input

6
1 1
4 1
1 5
10 10
10 8
7 10

Sample Output

7

Example 2
Sample Input

7
0 0
100 100
0 100
100 0
50 50
0 50
100 50

Sample Output

100

Nov. 10, 2018 2018 Mid-Atlantic Regional Programming Contest Page 8 of 20

Problem D: Find Poly

Problem D: Find Poly

Consider a set of line segments in a 2D plane.
For any set of line segments L, define P (L) as the set of all endpoints of the line

segments in L.
Two line segments are said to be connected if they share an endpoint.
Given a set of line segments U , we say that a geometric figure (“figure” for short)

is a set S of one or more line segments, S ⊆ U , for which
1. for any two points p1 and p2 in P (S), we can reach p2 from p1 by tracing

along one or more connected line segments, and

2. for every line segment e in S, all line segments of U that are connected to e
are also in S.

A polygon is a geometric figure S for which it is possible to trace a path starting from some endpoint
p and ending at p using every line segment in S exactly once and visiting each point in P (S) other than p,
exactly once, visiting p only at the beginning and end of the path.

See figure 1 which has 10 figures of which a, b, e, and f are polygons. The dots are the end points of
the line segments.

Note that b is self-intersecting but that the intersection is not at the end points of the intersecting line
segments. Similarly c and d as well as e and f intersect but are not connected.

Your task is to count the total number of figures and identify how many are polygons.

Input

The input is a series of lines terminated by end-of-file. Each line will have one or more line segments of
the form:

(x1,y1),(x2,y2);

where (x1,y1) is one end point and (x2,y2) is the other end point. 0 ≤ x1, y1, x2, y2 ≤ 99. All
coordinates are integers.

The separator characters, “(),;”, may be preceded or followed by white space. A line may be at most 100
characters long.

There will be at most 200 line segments. A given line segment will only appear once in the input and
none will be of length 0.

Line segments are not directed so the order of the end points in the line segment is not significant. The
order of the line segments in the input is also not significant.

Output

Print a single line containing two integers separated by a single space. The first number should be the
total number of figures and the second should be the number of polygons found.

Nov. 10, 2018 2018 Mid-Atlantic Regional Programming Contest Page 9 of 20

Problem D: Find Poly

20 40 60 80 100

20

40

60

80

100

a

b

c
d

e

f

g
h

i j

Figure 1: 10 figures, 4 polygons

Nov. 10, 2018 2018 Mid-Atlantic Regional Programming Contest Page 10 of 20

Problem D: Find Poly
Examples

In the first example below, the points correspond to the picture in Figure 1.

Example 1
Sample Input

(84,84),(78,84);(68,60),(64,64);(20,85),(15,88);(0,0),(2,8);
(30,60),(30,66);(13,40),(18,38);(15,88),(15,95);(18,38),(8,38);
(31,7),(25,10);(30,66),(26,70);(40,14),(30,19);(5,85),(15,88);
(48,20),(56,26);(84,84),(84,82);(66,82),(70,86);(15,95),(25,90);
(70,86),(66,88);(59,23),(50,27);(15,88),(5,80);(78,84),(74,82);
(60,80),(66,82);(5,85),(5,80);(25,10),(40,14);(20,85),(25,90);
(20,60),(30,66);(13,36),(14,30);(30,60),(20,60);(64,64),(60,60);
(31,7),(30,19);(15,88),(25,90);(68,60),(76,64);(8,38),(13,40);
(5,85),(15,95);(0,0),(10,4);(10,30),(14,30);(74,82),(70,86);
(10,30),(12,43);(6,10),(10,4);(5,80),(20,85);(6,10),(2,8);
(60,80),(66,88);(84,82),(74,82);(12,43),(13,36);

Sample Output

10 4

Example 2
Sample Input

(45,26),(88,34);(39,6),(67,8);(73,52),(92,38);(63,35),(18,61);
(34,23),(46,10);(2,75),(86,47);(26,18),(95,36);(59,78),(49,95);
(63,95),(67,80);(23,12),(33,46);(33,1),(46,10);(63,78),(2,75);
(2,33),(11,31);(99,98),(18,5);(88,34),(49,95);(25,43),(46,10);
(66,1),(2,75);(17,59),(2,33);(85,7),(85,59);(51,56),(63,95);
(1,48),(46,7);(66,49),(57,84);(59,78),(63,35);(0,49),(69,83);
(75,82),(51,56);(67,8),(92,38);(25,43),(86,47);(54,33),(12,42);
(87,12),(57,84);(37,92),(84,90);(18,61),(12,42);(66,49),(95,36);
(85,7),(73,52);(1,48),(99,98);(53,26),(11,31);(34,23),(86,47);
(22,91),(55,59);(23,12),(75,6);(66,1),(33,1);(33,46),(97,41);
(87,12),(66,49);(92,38),(8,19);(54,33),(97,41);(45,26),(7,53);
(39,6),(85,59);(63,78),(34,23);(76,9),(18,5);(67,80),(17,59);
(25,43),(66,1);(75,82),(53,26);(0,49),(18,61);(12,42),(19,3);
(33,1),(63,78);(76,9),(46,7);(8,19),(84,90);(8,19),(37,92);

Sample Output

7 2

Nov. 10, 2018 2018 Mid-Atlantic Regional Programming Contest Page 11 of 20

Problem E: Neutral Ground

Problem E: Neutral Ground

Two kingdoms had been at war for a long time, until the emperor inter-
vened to bring an end to the conflict. The territory in question comprises an M
by N rectangular grid. At the emperor’s insistence, the two kings have with-
drawn their troops until no two opposing troops are in adjacent squares of the
map (adjacent being horizontal or vertical – diagonal is not considered).

The emperor proposes to designate certain squares of the map as neutral
territory. Neither king will be allowed to move troops into those squares, and the emperor’s own forces will
patrol them to be sure that both kings observe these rules.

The emperor is frugal and does not want to commit more soldiers to this effort than absolutely necessary.
His generals have marked each square of the map with the number of soldiers required to secure that square.
What remains is to choose which of those squares should be patrolled.

Write a program to determine the minimum number of soldiers that the emperor will need to be deploy
to guarantee that the troops of one kingdom cannot move, in one or more steps, into squares occupied by the
troops of the second kingdom (moving horizontally or vertically) without encountering the emperor’s own
soldiers.

Input

Input begins with a line containing 2 integers, w and h, denoting the width and height of the map.
1 ≤ w, h ≤ 40.

This is followed by h lines. Each line contains w characters, left justified. These characters will be ‘A’
or ‘B’, designating a position held by king A or king B, or a single numeric digit, designating a currently
unoccupied position that can be secured by the use of that number of soldiers. For example, a ‘2’ would
indicate that two soldiers must be deployed to that square to secure it against passage of other troops. A
‘0’ indicates terrain that is impassible – the emperor need not commit soldiers there because the kingdom
troops cannot pass through that square.

No ‘A’ will be adjacent, horizontally or vertically, to any ‘B’.
There will be at least one ‘A’ and one ‘B’ in the input.

Output

Print a single line containing an integer denoting the minimum number of soldiers that the emperor must
deploy to guarantee that there is no open path between any ‘A’ position and any ‘B’ position, using any
combination of horizontal or vertical moves.

Nov. 10, 2018 2018 Mid-Atlantic Regional Programming Contest Page 12 of 20

Problem E: Neutral Ground
Examples

Example 1
Sample Input

8 5
A11111AA
AA7B111A
111BB111
11BBB111
11BBB11B

Sample Output

13

Example 2
Sample Input

25 6
A211111321231111111111111
2A2111110001111111BB11111
AA211111000111111BBBB1111
A2111114111411111BBBB1111
AA2111110001111111BB11111
AA21111110111111111111111

Sample Output

2

Nov. 10, 2018 2018 Mid-Atlantic Regional Programming Contest Page 13 of 20

Problem F: Picking Up the Dice

Problem F: Picking Up the Dice

Two players are playing a game with a set of K six-sided dice. One player calls
out a number in the range K . . . 6K and the other tries to roll that number. After the
first roll, the player is allowed to pick up any number (0 . . .K) of dice and re-roll
them.

Given the number of dice, the target number the player wants to roll, and the
set of numbers the player obtained on the first roll, what number of dice should the
player pick up to maximize their chances of getting the target number on the second
roll?

Input

Input begins with a line containing 2 integers, K, the number of dice, and T , the target number. 2 ≤
K ≤ 24, K ≤ T ≤ 6K.

The next line contains K integers, indicating the numbers that were rolled on each of the dice on the
first roll. All will be integers in the range 1 . . . 6.

Output

Print a single line containing an integer denoting the number of dice that the roller should pick up and
re-roll in order to maximize the chances of getting an overall sum of T . (The roller will be able to choose
which dice to pick up, but you are only asked to print the number of dice, not which ones.)

If there are more than one numbers of dice that can be picked up to achieve the same probability of
getting to T , print the smallest such value.

Examples

Example 1
Sample Input

3 9
5 4 1

Sample Output

1

Example 2
Sample Input

4 13
2 2 2 2

Nov. 10, 2018 2018 Mid-Atlantic Regional Programming Contest Page 14 of 20

Problem F: Picking Up the Dice
Sample Output

3

Example 3
Sample Input

18 90
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Sample Output

12

Example 4
Sample Input

6 21
1 2 3 4 5 6

Sample Output

0

Nov. 10, 2018 2018 Mid-Atlantic Regional Programming Contest Page 15 of 20

Problem G: Playing the Slots

Problem G: Playing the Slots

The small nation of Erratica prides itself on defying conventions established by
the more “boring” countries around the world. One of their more obvious distinc-
tions lies in the design of their coinage. Believing that a person should be easily able
to identify the value a coin in a pocket or change purse by touch alone, Erratica de-
signs its coins as polygons. For stability, the coins are convex – there are no notches
cut into the coins. But the overall shapes themselves can be quite irregular.

Erratica Vending, the only manufacturer of vending machines in the nation, has
been sent the design for a new coin to be issued. Their machines are designed so
that coins enter through a slot into channel shaped as a rectangular prism with the
slot being an open face of the prism. The channel is narrow because the coins are
thin, but long enough to contain the entire coin. From the outside of the machine,
the slot appears as a rectangular hole.

The company wants to know what would be the smallest slot size they will need so that the new coin
can be slipped, after some rotation, into the slot.

Input

Input begins with a line containing N , the number of sides to the polygonal coin. 3 ≤ N ≤ 20.
This is followed by N lines, each containing two real numbers x and y, the coordinates of a vertex of

the polygon. 0.0 ≤ x, y ≤ 100.0
All N vertices will be distinct, and the vertices will be presented in an order proceeding clockwise

around the perimeter of the coin.

Output

Print a single line with a real number, to two decimal places precision, denoting the minimum slot size
allowing the coin to pass through. Outputs will be accepted that are within ±0.01 of the judges’ answer.

Examples

Example 1
Sample Input

3
0 0
0.71 3.54
4.21 4.21

Sample Output

2.00

Nov. 10, 2018 2018 Mid-Atlantic Regional Programming Contest Page 16 of 20

Problem G: Playing the Slots

Example 2
Sample Input

6
10 12.5
10 17.5
15 20
20 17.5
20 12.5
15 10

Sample Output

8.94

Nov. 10, 2018 2018 Mid-Atlantic Regional Programming Contest Page 17 of 20

Problem H: Tightly Packed

Problem H: Tightly Packed

Consider packing widgets for shipping where widgets cannot be stacked
upon each other (2D packing). Each widget has a 1x1 footprint and is 1 unit
high.

Boxes are available in any W by H by 1 size such that H/2 ≤ W ≤ 2H ,
with W and H being integers. The company wants to minimize the amount of
packing material that will be needed to fill empty squares in a box.

Given N , the number of widgets to be shipped, what is the smallest number of squares that will be left
empty when those widgets are packed for shipping?

Input

Input consists of one line containing an integer N , the number of widgets to be packed. 1 ≤ N ≤ 1016.

Output

Print a single line containing an integer denoting the minimum number of empty squares.

Examples

Example 1
Sample Input

47

Sample Output

1

Example 2
Sample Input

523

Sample Output

2

Example 3
Sample Input

10000000000001

Nov. 10, 2018 2018 Mid-Atlantic Regional Programming Contest Page 18 of 20

Problem H: Tightly Packed
Sample Output

6

Nov. 10, 2018 2018 Mid-Atlantic Regional Programming Contest Page 19 of 20

20

