
2009 Mid-Atlantic Regional Programming Contest
Welcome to the 2009 Programming Contest. Before you start the contest, please be aware of

the following notes:

The Contest
1. There are eight (8) problems in the packet, using letters A–H. These problems are NOT

sorted by difficulty. As a team’s solution is judged correct, the team will be awarded a
balloon. The balloon colors are as follows:

Problem Problem Name Balloon Color
A Euclid Yellow
B Block Game Green
C Parlay Wagering Silver
D The Ninja Way Black
E Extended Manhattan Distance Orange
F Off the Wall Purple
G Stringer Pink
H Word Ladder Red

2. Solutions for problems submitted for judging are called runs. Each run will be judged.

The judges will respond to your submission with one of the following responses. In the event
that more than one response is applicable, the judges may respond with any of the applicable
responses.

Response Explanation
Correct Your submission has been judged correct.

Wrong Answer Your submission generated output that is not correct or is
incomplete.

Output Format Error Your submission’s output is not in the correct format or is
misspelled.

Excessive Output Your submission generated output in addition to or instead
of what is required.

Compilation Error Your submission failed to compile.
Run-Time Error Your submission experienced a run-time error.

Time-Limit Exceeded Your submission did not solve the judges’ test data within 30
seconds.

3. A team’s score is based on the number of problems they solve and penalty points, which
reflect the amount of time and number of incorrect submissions made before the problem is
solved. For each problem solved correctly, penalty points are charged equal to the time at

Nov. 7, 2009 2009 Mid-Atlantic Regional Programming Contest Page 1 of 17

which the problem was solved plus 20 minutes for each incorrect submission. No penalty
points are added for problems that are never solved. Teams are ranked first by the number of
problems solved and then by the fewest penalty points.

4. This problem set contains sample input and output for each problem. However, you may be
assured that the judges will test your submission against several other more complex datasets,
which will not be revealed until after the contest. Your major challenge is designing other
input sets for yourself so that you may fully test your program before submitting your run.
Should you receive an incorrect judgment, you should consider what other datasets you could
design to further evaluate your program.

5. In the event that you feel a problem statement is ambiguous or incorrect, you may request
a clarification. Read the problem carefully before requesting a clarification. If the judges
believe that the problem statement is sufficiently clear, you will receive the response, “The
problem statement is sufficient; no clarification is necessary.” If you receive this response,
you should read the problem description more carefully. If you still feel there is an ambiguity,
you will have to be more specific or descriptive of the ambiguity you have found. If the
problem statement is ambiguous in specifying the correct output for a particular input, please
include that input data in the clarification request.

You may not submit clarification requests asking for the correct output for inputs that you
provide. Sample inputs may be useful in explaining the nature of a perceived ambiguity, e.g.,
“There is no statement about the desired order of outputs. Given the input: . . . , would not
both this: . . . and this: . . . be valid outputs?”.

If a clarification is issued during the contest, it will be broadcast to all teams.

6. Runs for each particular problem will be judged in the order they are received. However, it
is possible that runs for different problems may be judged out of order. For example, you
may submit a run for B followed by a run for C, but receive the response for C first.

Do not request clarifications on when a response will be returned. If you have not received
a response for a run within 30 minutes of submitting it, you may have a runner ask the
site judge to determine the cause of the delay. Under no circumstances should you ever
submit a clarification request about a submission for which you have not received a
judgment.
If, due to unforeseen circumstances, judging for one or more problems begins to lag more
than 30 minutes behind submissions, a clarification announcement will be issued to all teams.
This announcement will include a change to the 30 minute time period that teams are ex-
pected to wait before consulting the site judge.

7. The submission of abusive programs or clarification requests to the judges will be considered
grounds for immediate disqualification.

Nov. 7, 2009 2009 Mid-Atlantic Regional Programming Contest Page 2 of 17

Your Programs
8. All solutions must read from standard input and write to standard output. In C this is

scanf/printf, in C++ this is cin/cout, and in Java this is System.in/System.out. The judges
will ignore all output sent to standard error (cerr in C++ or System.err in Java). You may
wish to use standard error to output debugging information. From your workstation you may
test your program with an input file by redirecting input from a file:

program < file.in

9. All lines of program input and output should end with a newline character (\n, endl, or
println()).

10. All input sets used by the judges will follow the input format specification found in the
problem description. You do not need to test for input that violates the input format specified
in the problem.

11. Unless otherwise specified, all lines of program output should be left justified, with no lead-
ing blank spaces prior to the first non-blank character on that line.

12. Unless otherwise specified, all numbers in your output should begin with the - if negative,
followed immediately by 1 or more decimal digits. If it is a real number, then the decimal
point should appears, followed by the appropriate number of decimal digits. For output of
real numbers, the number of digits after the decimal point will be specified in the problem
description as the “precision”).

All real numbers printed to a given precision should be rounded to the nearest value. Round-
ing should be carried out so that trailing digits of 5 of higher are rounded up, tr4ailing digits
of 4 or less are rounded down. For example, if a precision of 2 decimal digits is requested,
then 0.0152 would round to 0.02, but 0.0149 would round to 0.01.

In simpler terms, neither scientific notation nor commas will be used for numbers, and you
should ensure you use a printing technique that rounds to the appropriate precision.

13. If a problem specifies that an input is a floating point number, the input will be presented
according to the rules stipulated above for output of real numbers, except that decimal points
and the following digits may be omitted for numbers with no non-zero decimal portion.
Scientific notation will not be used in input sets unless a problem explicitly allows it.

Good luck, and HAVE FUN!!!

Nov. 7, 2009 2009 Mid-Atlantic Regional Programming Contest Page 3 of 17

Problem A: Euclid

Problem A: Euclid
In one of his notebooks, Euclid gave a

complex procedure for solving the following
problem. With computers, perhaps there is an
easier way.

In a 2D plane, consider a line segment AB,
another point C which is not collinear with
AB, and a triangle DEF . The goal is to find
points G and H such that:

• H is on the ray AC (it may be closer to A than C or further away, but angle CAB is the
same as angle HAB)

• ABGH is a parallelogram (AB is parallel to GH , AH is parallel to BG)

• The area of parallelogram ABGH is the same as the area of triangle DEF

Input
Input consists of multiple datasets. Each dataset will consist of twelve real numbers, with no more
than 3 decimal places each, on a single line. Those numbers will represent the x and y coordinates
of points A through F , as follows:

xA yA xB yB xC yC xD yD xE yE xF yF

Points A, B and C are guaranteed to not be collinear. Likewise, D, E and F are also guaranteed to
be non-collinear. Every number is guaranteed to be in the range from−1000.0 . . . 1000.0 inclusive.

End of the input will be a line with twelve zero values.

Output
For each input set, print a single line with four floating point numbers. These represent points G
and H , like this:

xG yG xH yH

Print all values to a precision of 3 decimal places. Print a single space between numbers.

Example
Given the input

Nov. 7, 2009 2009 Mid-Atlantic Regional Programming Contest Page 4 of 17

Problem A: Euclid
0 0 5 0 0 5 3 2 7 2 0 4
1.3 2.6 12.1 4.5 8.1 13.7 2.2 0.1 9.8 6.6 1.9 6.7
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

the output would be

5.000 0.800 0.000 0.800
13.756 7.204 2.956 5.304

Nov. 7, 2009 2009 Mid-Atlantic Regional Programming Contest Page 5 of 17

Problem B: Block Game

Problem B: Block Game
Bud bought this new board game. He is hooked. He has been playing it over and over again

such that he thinks can finish the game with the minimum number of moves, but he is uncertain.
He wants you to help him check whether the moves he has listed are indeed the minimum number
of moves.

You are given a 6x6 board, and a set of 2x1 or 3x1 (vertical) or 1x2 or 1x3 (horizontal) pieces.
You can slide the horizontal pieces horizontally only, and the vertical pieces vertically only. You
are only allowed to slide a piece if there is no other piece, nor a wall, obstructing its path.

There will be one special 1x2 horizontal piece. There will also be a gap in the wall, on the right
side, on the same row as the special piece, that only the special piece can fit through. The goal of
the game is to get that one special horizontal piece out of the gap on the right side.

A “move” in this game is when you take a piece and slide it any number of squares (i.e. if
you slide a piece horizontally one square, that is one move, and sliding it 2 squares at once is also
considered one move).
Input
Input will consist of multiple datasets. Each data set will begin with a line with a single capital
letter, indicating the special piece which must move off of the board.

The next 6 lines will consist of 6 characters each. These characters will either be a ’.’ (period),
indicating an empty square, or a capital letter, indicating part of a piece.

The letters are guaranteed to form pieces that are 1x2, 1x3, 2x1 or 3x1, and no letter will be
used to represent more than one piece on any given board. The letter indicating the special piece
is guaranteed to correspond to a 1x2 piece somewhere on the board.

The end of data is indicated by a single ’*’ (asterisk) on its own line.

Output
For each data set, print a single integer, indicating the smallest number of moves necessary to
remove the given piece, or -1 if it isn’t possible. Print each integer on its own line. There should
be no blank lines between outputs.

Nov. 7, 2009 2009 Mid-Atlantic Regional Programming Contest Page 6 of 17

Problem B: Block Game
Example
Given the input

C
..AB..
..AB..
CCAB..
......
.DDEE.
......
A
......
......
......
......
AA....
......
Z
.ZZ..X
.....X
.....X
.....Y
.....Y
.....Y
*

the output would be

5
1
-1

Nov. 7, 2009 2009 Mid-Atlantic Regional Programming Contest Page 7 of 17

Problem C: Parlay Wagering

Problem C: Parlay Wagering
Parlay wagering offers sports bettors the opportunity to win a large sum of money from a small

initial wager. A parlay wager is a combination of individual independent wagers that only pays if
no individual wager loses. The payout from each wager is applied or “parlayed” to the next wager
in turn. If any individual wager loses, the bettor receives nothing. If any individual wager is a tie
or “push”, that wager is effectively ignored, reducing the ultimate payout.

The sports book quotes the payout rate for an individual wager as a “money line”, a non-zero
integer in the range -2000 to 2000. To compute the payout for a successful wager, the money line
is converted to a decimal multiplier as follows: if the money line is positive, it is divided by 100 to
obtain the multiplier. If the money line is negative, the absolute value is divided into 100 to obtain
the multiplier. The multiplier is always truncated to three digits after the decimal point. The wager
is multiplied by this multiplier to determine the amount won. The amount won is truncated to the
cent (the sports book keeps the fractional cents).

Consider the following example for a five-way parlay wager:
Money Line Wager Result Multiplier Amount Won

-170 $10.00 Win 100/170 $5.88
-160 $15.88 Win 100/160 $9.92
125 $25.80 Win 125/100 $32.25
-135 $58.05 Win 100/135 $42.95
-140 $101.00 Win 100/140 $72.11

Subtotal: $163.11
Original Wager: $10.00
Total Returned: $173.11

The maximum payout for any parlay wager is $1 million. If the calculated total exceeds that
amount, the actual total returned will be $1 million.

Write a program that will calculate the total amount returned for a series of parlay wagers.
For each parlay wager, your program is to print the total amount returned in dollars and cents

on a single line starting in the first column without embedded or trailing whitespace. Print the
leading dollar sign and insert commas at the millions and thousands positions as needed.
Input
Input will consist of several wagers. The first line of input to your program will contain the total
number of parlay wagers as a single positive integer.

Each wager that follows will be represented by a series of lines.
The first line of each parlay wager contains the initial bet and the count of individual wagers as

integers separated from each other by a single space.
The following lines represent the individual wagers, one per line. Each individual wager is

given as its money line followed by a single space and the result of the wager (“Win”, “Tie”, or
“Loss”).

Nov. 7, 2009 2009 Mid-Atlantic Regional Programming Contest Page 8 of 17

Problem C: Parlay Wagering
Output
For each parlay wager, your program should print one line containing the total amount returned in
dollars and cents. Print the leading dollar sign and insert commas at the millions and thousands
positions as needed.

Example
Given the input

3
10 5
-170 Win
-160 Win
125 Win
-135 Win
-140 Win
15 8
100 Win
-100 Tie
-250 Win
135 Tie
265 Tie
1500 Win
120 Win
130 Win
10 2
100 Loss
300 Tie

the output would be

$173.11
$3,400.32
$0.00

Nov. 7, 2009 2009 Mid-Atlantic Regional Programming Contest Page 9 of 17

Problem D: The Ninja Way

Problem D: The Ninja Way
As we all know, ninjas travel by jumping from treetop to treetop. A clan of ninjas plan to use

N trees to hone their tree hopping skills. They will start at the shortest tree and make N-1 jumps,
with each jump taking them to a taller tree than the one they’re jumping from. When done, they
will have been on every tree exactly once, and they will end up on the tallest tree.

The ninjas can travel for at most a certain horizontal distance D in a single jump. To make this
as much fun as possible, the Ninjas want to maximize the distance between the planting positions
of the shortest and the tallest tree.

The ninjas are going to plant the trees subject to the following constraints:
• All trees are to be planted along a one-dimensional path, which we can regard as the number

line.

• Trees must be planted at integer locations along the path, with no two trees at the same
location.

• Trees must be arranged so their planted ordering from left to right is the same as their order-
ing in the input: from 1, 2, . . . , N . They must not be sorted by height, or reordered in any
way. They must be kept in their stated order.

• The Ninjas can only jump so far, so every tree must be planted close to the next tallest tree.
In fact, they must be no further than D apart on the ground (the difference in their heights
doesn’t matter).

Given N trees, numbered 1, 2, . . . , N , each with a distinct integer height, help the ninjas figure
out the maximum possible distance between the shortest tree and the tallest tree.

Input
Input will consist of multiple datasets. Each dataset begins with a line containing two integers N
(1 ≤ N ≤ 1000) and D (1 ≤ D ≤ 106).

The next N lines each contains a single integer, giving the heights of the N trees.
The last test case is followed by a line with two zeros.

Nov. 7, 2009 2009 Mid-Atlantic Regional Programming Contest Page 10 of 17

Problem D: The Ninja Way
Output
For each test case, output a line with a single integer representing the maximum possible distance
between the planted positions of the shortest and tallest tree, subject to the constraints above, or -1
if it is impossible to lay out the trees. Do not print any blank lines between answers.

Example
Given the input

4 4
20
30
10
40
5 6
20
34
54
10
15
4 2
10
20
16
13
0 0

the output would be

3
3
-1

Nov. 7, 2009 2009 Mid-Atlantic Regional Programming Contest Page 11 of 17

Problem E: Extended Manhattan Distance

Problem E: Extended Manhattan Distance

A

B

The streets in Manhattan form a grid. If the grid
is aligned such that the grid lines are parallel to the x-
and y-coordinate axes, the distance one needs to walk or
drive from one point to the other, assuming you can only
move along streets and cannot take short cuts through
buildings, equals ∆x + ∆y. This is called the Manhat-
tan distance.

Now assume that the land outside the city grid is
completely flat with no obstacles that prevent moving
anywhere. Suppose we want to move from point A to
point B where these points can be on the grid or outside
the grid. When traveling outside the city, the shortest
distance between the two points in this case will not nec-
essarily be the Manhattan distance. It will be the Man-
hattan distance if the two points are both on the grid. If
both points are, for example, north of the grid, the short-
est distance between the two points will be the straight-line (Euclidean) distance between them. In
other cases, calculating the distance may be more complicated.

In this problem, two opposite corners of the city grid will be specified. It will be assumed that
the grid lines are parallel to the coordinate axes, and that the distance between any two consec-
utive grid lines, horizontal and vertical, is 1 unit. Two points A and B on the plane with integer
coordinates will also be specified. Write a program to calculate the shortest distance between the
two points, given that we can only move along the grid lines (i.e. in the city streets) within the city
grid.
Input
Input will consist of multiple datasets. Each dataset will consist of a single line with eight integers,
as follows:

xL yL xU yU xA yA xB yB

describing the points L, U , A, and B. L and U are the lower-left corner and the upper-right corner
of the city grid, respectively. A and B are the two points between which we wish to travel.

All input integers will be in the range from -1000 to 1000 (inclusive), with xL < xu and
yL < yU . End of data will be signified by a line with eight zeros.

Output
For each data set, print one line containing the distance of the shortest path between the A and B,
printed to to three decimal places of precision.

Nov. 7, 2009 2009 Mid-Atlantic Regional Programming Contest Page 12 of 17

Problem E: Extended Manhattan Distance
Example
Given the input

0 0 4 4 -1 0 5 3
0 0 4 4 2 2 5 3
0 0 0 0 0 0 0 0

the output would be

7.650
3.414

Nov. 7, 2009 2009 Mid-Atlantic Regional Programming Contest Page 13 of 17

Problem F: Off the Wall

Problem F: Off the Wall
Consider a pool table, and the positions of a cue ball

and a target ball. The cue ball must bounce off of a cer-
tain number of cushions (i.e. edges of the table), and
then hit the target ball. What is the minimum distance
that the cue ball has to travel?

Assume ideal cushions with perfect reflection (i.e., the angle at which a ball strikes the cushion
is equal to the angle at which it bounces away), and a negligible ball diameter. The coordinate
system uses a corner of the table as the origin, and the edges of the table are aligned with the
coordinate axes. If the cue ball hits in a corner, it is considered to be hitting two cushions. The cue
ball must hit exactly the right number of cushions first, before hitting the target ball.
Input
Input will consist of multiple datasets. Each dataset is on a single line containing seven integers:

L W xC yC xT yT N

The first two integers, L and W (2 ≤ L, W ≤ 100), are the dimensions of the table.
The next two pairs of integers are the x,y coordinates of the cue and target balls, respectively.

You are guaranteed that 0 < xC < L, 0 < xT < L, 0 < yC < W , and 0 < yT < W . C and T are
distinct points.

The final integer N , (0 ≤ N ≤ 100), is the number of cushions that must be hit prior to striking
the target ball.

End of input will be indicated by a line with seven zeros.

Output
For each dataset, print a line with a single real number to 3 decimal digits precision, representing
the shortest distance the cue ball must travel.

Example
Given the input

20 15 10 1 12 1 1
10 20 1 2 7 16 2
100 100 2 50 1 50 1
0 0 0 0 0 0 0

the output would be

2.828
19.698
100.005

Nov. 7, 2009 2009 Mid-Atlantic Regional Programming Contest Page 14 of 17

Problem G: Stringer

Problem G: Stringer
Imagine a list of strings that are all built from the first N letters of the alphabet, which all have

a predetermined number of a’s, a predetermined (but possibly different) number of b’s, and so on.
Imagine that it’s sorted in alphabetical order, and numbered, starting at 0. What’s the Kth string in
the list?

For example, look at all strings of a’s and b’s (N=2) with 2 a’s and 3 b’s:
0: aabbb 5: babab
1: ababb 6: babba
2: abbab 7: bbaab
3: abbba 8: bbaba
4: baabb 9: bbbaa

If K=5, then the Kth string in the list would be babab.
Input
Input will consist of multiple datasets. Each dataset consists of two lines.

On the first line are two integers, N (1 ≤ N ≤ 20) and K (0 ≤ K < m), where N is the
number of letters of the alphabet used, K is the index of the list element that should be found, and
m (not given explicitly in the input) denotes the number of strings make up the list.

m, the number of strings in the list may be very, very large (too large to permit generating the
whole list), but the input will be chosen so that m and K will each fit in a 32 bit integer.

On the second line will be N non-negative integers, which represent the number of a’s, the
number of b’s and so on. The sum of these integers is guaranteed to be at least 1 and no greater
than 50.

End of input is indicated by a line with two zeros.

Output
Output each answer string on its own line. Do not print any extra white space. Do not print any
blank lines between answers.

Example
Given the input

2 5
2 3
3 0
2 3 1
0 0

the output would be

babab
aabbbc

Nov. 7, 2009 2009 Mid-Atlantic Regional Programming Contest Page 15 of 17

Problem H: Word ladder

Problem H: Word ladder
You now work for a puzzle company. They have a puzzle they call a Word Ladder. A solver

starts with a given starting word, and makes changes one letter at a time until s/he reaches a target
word, with no word in the chain appearing more than once. There are three ways to take a single
step from one word to another:

• Change one letter

• Add one letter

• Remove one letter

So, it’s one step from COT to CAT, one step from CAT to SCAT, and one step from SCAT to SAT.
Here’s a word ladder from COT to SCAT:

COT ⇒ CAT ⇒ SAT ⇒ SCAT

Here’s another word ladder from COT to SCAT:

COT ⇒ CAT ⇒ SCAT

The length of a word ladder is the number of words in it, so the examples above show a word
ladder of length 4, and one of length 3. The second is the shortest possible between COT and
SCAT. Shorter ladders are considered better than longer ladders.

The puzzle company knows that, given two words, a smart solver will always find the best
ladder, which is the shortest ladder, between them. They want to give their solvers a challenge, so
they are looking for long word ladders. Given a limited vocabulary, you need to tell them the length
of the longest word ladder that a smart solver would find using only words in that vocabulary - that
is, the longest of all best ladders.

Input
Input will consist of multiple datasets. Each dataset starts with an integer N (1 ≤ N ≤ 500) which
indicates the number of words in the vocabulary. The words follow, one per line.

Each word will consist only of 1 to 50 lower-case letters. There will be no other characters or
white space.

The end of input is indicated by a line containing a single zero.

Output
For each input set, print a line containing a single integer representing the length of the longest
ladder that a smart solver would find.

Nov. 7, 2009 2009 Mid-Atlantic Regional Programming Contest Page 16 of 17

Problem H: Word ladder
Example
Given the input

4
cat
cot
scat
sat
7
welcome
to
the
acm
regional
programming
contest
0

the output would be

3
1

Nov. 7, 2009 2009 Mid-Atlantic Regional Programming Contest Page 17 of 17

