
2022 North America Championship

Solutions

The Judges

May 29, 2023

2022 North America Championship Solutions 1 / 38

Problem A: Allergen Testing

Problem

You are allergic to exactly one of n compounds. You have k sites where you can apply
compounds. You repeat the following process d times:

1 Apply each compound to some (possibly zero) of the sites.
2 Observe which sites have an allergic reaction.

Given that each site can only be observed on one day, and a site can not be used if an

allergic reaction is observed there, �nd the minimum number of sites you'll need to

discover which of the n compounds you are allergic to.

Bounds: 1 ≤ n, d ≤ 1018.

Problem Author: Nick Wu 2022 North America Championship Solutions 2 / 38

Problem A: Allergen Testing

Observation: k must be small!

We will �rst show that k ≤ 60 for all valid test cases.

The maximum possible value of k is clearly obtained by setting d = 1 and n = 1018 since

giving more days or fewer compounds cannot increase the answer.

In this case, if we label the sites from 0 to 59 and the compounds from 0 to 1018 − 1 and

we apply compound x to exactly the sites y where the y -th bit is turned on in the binary

representation of x , then we can uniquely determine which compound we are allergic to by

reading o� the sites that demonstrate an allergic reaction in binary.

Problem Author: Nick Wu 2022 North America Championship Solutions 3 / 38

Problem A: Allergen Testing

Searching for the answer

Because k ≤ 60, if we can quickly check whether it is possible to di�erentiate among n

compounds for some �xed value of k , we can do either a linear scan or a binary search to

compute the minimum possible value of k .

Therefore, we must now answer the question - given d times to repeat the process and k

available sites, how many compounds can we di�erentiate among?

Problem Author: Nick Wu 2022 North America Championship Solutions 4 / 38

Problem A: Allergen Testing

How many compounds can we di�erentiate?

We will prove that for d rounds of the process and k sites, we can di�erentiate among

(d + 1)k compounds by induction on d .

The base case is d = 0. In this case, it is clearly impossible to di�erentiate between two

di�erent compounds since we cannot test either of them. If there is exactly one

compound, we don't need any testing to know that we are allergic to it.

Assume that for d ′ < d rounds of testing and k sites, we can di�erentiate among

(d ′ + 1)k compounds.

Imagine that we have k sites and d rounds. For a �xed subset of x sites, we can apply at

most dx compounds to that site by the induction hypothesis.

Therefore, we can di�erentiate among

k∑
x=0

(
k

x

)
dx compounds.

Problem Author: Nick Wu 2022 North America Championship Solutions 5 / 38

Problem A: Allergen Testing

Solution

Note that

k∑
x=0

(
k

x

)
dx =

k∑
x=0

(
k

x

)
dx1k−x = (d + 1)k , as desired.

This completes the induction proof.

It remains to compute the minimum possible value of k such that (d + 1)k ≥ n.

This can be done either naively with Python or by carefully multiplying with 64-bit integers

in C++ and Java to detect over�ow.

Possible edge case: When n = 1, the answer is zero.

Problem Author: Nick Wu 2022 North America Championship Solutions 6 / 38

Problem B: A Tree and Two Edges

Problem

Given an undirected connected graph of n vertices and n + 1 edges, answer q queries of

the form: given two distinct vertices u and v , count the number of distinct simple paths

between them.

Bounds: n, q ≤ 5 · 104.

Problem Author: Nick Wu 2022 North America Championship Solutions 7 / 38

Problem B: A Tree and Two Edges

Counting number of paths on a tree + one edge

By de�nition, there is exactly one simple path between two distinct vertices on a tree.

If we add an additional edge (a, b) to the graph, this adds two more potential simple
paths:

Going from u to a along the original tree, traversing the edge from a to b, then going from b

to v .
Going from u to b along the original tree, traversing the edge from b to a, then going from a

to v .

In order for these paths to be valid, the two segments before and after the edge traversal

must be disjoint.

Problem Author: Nick Wu 2022 North America Championship Solutions 8 / 38

Problem B: A Tree and Two Edges

Validating that two paths on a tree are disjoint

We can naively check if two paths are disjoint by enumerating the vertices on both paths

and seeing if any vertex is common to both. This is too slow for the given problem.

Note that any path on a tree involves ascending up the tree and descending down the tree.

We can partition any path into two subpaths that only ascend by �nding the least common

ancestor. This is doable in O(log n) time.

We now need to determine if two paths that both only ascend have any common vertices.

This can also be done by doing an LCA query, or by precomputing the Euler tour of the

tree.

Problem Author: Nick Wu 2022 North America Championship Solutions 9 / 38

Problem B: A Tree and Two Edges

Solving the original problem

With a tree and two additional edges, there are now eight additional paths to check - there

are two ways to order the edges, and each edge can be traversed in either direction.

We therefore have to check that all three of these segments are pairwise disjoint.

Problem Author: Nick Wu 2022 North America Championship Solutions 10 / 38

Problem C: Broken Minimum Spanning Tree

Problem

You are given a labeled spanning tree in a weighted graph. In a single operation, you can

remove the label from one of the edges and add a label to another edge, as long as the

labeled edges still form a spanning tree.

Compute the minimum number of operations needed to make the labeled spanning tree a

minimum spanning tree of the graph.

Bounds: 2 ≤ n ≤ 2 · 103, n − 1 ≤ m ≤ 3 · 103.

Problem Author: Arnav Sastry 2022 North America Championship Solutions 11 / 38

Problem C: Broken Minimum Spanning Tree

Solving Simpler Variant - Unique Weights

Assume for simplicity that all edge weights are unique. The minimum spanning tree is

unique in this case.

If there are e labeled edges not in the minimum spanning tree, then we need at least e

operations.

We can always do this in e operations!

In a single operation, we pick an arbitrary unlabeled edge that is in the minimum spanning

tree and add it.

This forms a cycle - delete the heaviest edge in the cycle, which by de�nition can not be in

any minimum spanning tree.

Problem Author: Arnav Sastry 2022 North America Championship Solutions 12 / 38

Problem C: Broken Minimum Spanning Tree

Solution

In the original problem, the edge weights are not unique. Therefore, we should pick a

minimum spanning tree that maximizes the number of labeled edges initially in it.

When trying to �nd a cycle, we can simply DFS from one vertex of the added edge to the

other. We know whether a given edge should or shouldn't be in the spanning tree, so as

we return from the DFS, we can remove any edge from the spanning tree that isn't in our

candidate minimum spanning tree.

Problem Author: Arnav Sastry 2022 North America Championship Solutions 13 / 38

Problem D: Fail Fast

Problem

You are given n automated tests that each have a cost, c , and a probability of passing, p.

Each test, i , may have a dependency, d , such that test i cannot be executed before test d .

The cost of executing a sequence of tests is the sum of the test costs up to and including

the �rst test that does not pass.

The cost of executing a sequence of tests where all tests pass is 0.

Find a sequence of tests that minimizes the expected cost of running the tests.

Bounds: 1 ≤ n ≤ 105, 1 ≤ c ≤ 106, 0 < p < 1, p has at most 6 decimal digits.

Problem Authors: Finn Lidbetter and Nick Wu 2022 North America Championship Solutions 14 / 38

Problem D: Fail Fast

How would we solve this if there were no dependencies?

For a sequence, S , let Ci =
i∑

j=1

cj and Pi =
i∏

j=1

pj , where cj and pj are the cost and pass

probability of the jth test in sequence S .

The expected cost of a sequence is

E (S) = C1(1− p1) + C2 · P1(1− p2) + · · ·+ CnPn−1(1− pn) + 0.

Let S∗ be the sequence that minimizes E (S∗).

We can prove that there is no pair of test indices, i , j in S∗ such that i < j and
ci

1−pi
>

cj

1−pj
.

Therefore, S∗ can be found by sorting the tests in increasing order of c
1−p .

Problem Authors: Finn Lidbetter and Nick Wu 2022 North America Championship Solutions 15 / 38

Problem D: Fail Fast

Observation

In an optimal solution, the remaining test, T , that minimizes c
1−p , will be executed as

soon as all of its dependencies have executed.

If some other test, V , is executed before test T and after T 's dependencies have executed,
then we can �nd a better solution by moving T to run before V .

Problem Authors: Finn Lidbetter and Nick Wu 2022 North America Championship Solutions 16 / 38

Problem D: Fail Fast

Idea

Process tests in order of priority. Initially, the priority order will be given by c
1−p .

If we cannot run a test yet, then �merge� it into its parent, to treat this test and its parent
as a unit. The new priority value will be given by considering two cases:

1 The parent test fails before the merged child is run.
2 The parent test passes and the merged child is able to run.

So, if the parent had cost c1 and pass probability p1 and the child had cost c2 and pass

probability p2, then replace the parent's cost with c1 + p1 · c2 and the parent's pass

probability with p1 · p2. Set its new priority as c1+p1·c2
1−p1·p2 .

Update any test that depended on the child to now depend on the merged unit.

Keep track of which tests are executed in order as part of a merged unit.

Problem Authors: Finn Lidbetter and Nick Wu 2022 North America Championship Solutions 17 / 38

Problem D: Fail Fast

How to do this e�ciently?

Maintain a priority queue of test units sorted by priority.

Maintain disjoint sets of tests, where tests are in the same disjoint set if they share a

parent dependency.

Only track the updated parent relationships for the root element in each disjoint set.

Keep track of a linked list of tests in each merged test unit.

Keep track of which tests have been executed.

Problem Authors: Finn Lidbetter and Nick Wu 2022 North America Championship Solutions 18 / 38

Problem D: Fail Fast

The merge operation

Remove the minimum priority test unit from the priority queue.

Update the priority value of its parent.

Take the union of the minimum priority test and its children in the disjoint sets data

structure.

Set the parent of the root element in the disjoint set now containing the minimum priority

test unit to be the id of that test unit's parent.

Concatenate parent's linked list of tests with the minimum priority test unit's linked list of

tests.

This operation is O(log n).

Problem Authors: Finn Lidbetter and Nick Wu 2022 North America Championship Solutions 19 / 38

Problem D: Fail Fast

Algorithm

1 Initialize the data structures.
2 Process the minimum priority test unit.

1 Check if its dependencies have executed by checking if the parent of the root element in the
same disjoint set has been executed.

2 Choose this test unit to run next if its dependences have been met and remove this test unit
from the priority queue.

3 Otherwise, merge this test unit into its parent.

3 Print each test unit in the order that they are executed. For each test unit, print the tests

in its linked list of merged tests before moving onto the next test unit.

Overall time complexity: O(n log n).

Problem Authors: Finn Lidbetter and Nick Wu 2022 North America Championship Solutions 20 / 38

Problem E: First Last

Problem

Alice and Bob are playing a word game. From a collection of n words, Alice chooses the

�rst word. Players alternate choosing words. If the other player chose a word ending in

letter α, the current player must choose a word starting with α. No word can be chosen

more than once, and the �rst player to not have a valid move loses. Determine who wins if

both players play optimally.

Bounds: 1 ≤ n ≤ 103, there will be at most three unique letters that can be at the

beginning or end of a word.

Problem Author: Tom Rokicki 2022 North America Championship Solutions 21 / 38

Problem E: First Last

Reduction to Graph Theory Problem

Assign each letter a vertex and, for a word that starts with letter α and ends with letter β,
draw a directed edge going from α to β.

From here, we will reframe this problem in graph theory terms - Alice picks a starting

vertex and players alternate selecting an edge from the current vertex traveling to the

destination vertex for the edge. A player loses if they end up at a node with no unselected

edges going out from it. Determine who wins if both players play optimally.

Problem Author: Tom Rokicki 2022 North America Championship Solutions 22 / 38

Problem E: First Last

Reducing the Graph

Claim 1: If there are x ≥ 2 self-loops for some vertex v , then the result is the same if we

remove two of these self-loops.

Proof: If the current player is in a losing position at vertex v , using a self-loop cannot

change the result since the other player can use another self-loop and the current player is

back where they started, just with two fewer self-loops.

Claim 2: If there is an edge from u to v and another edge from v to u, then the result is

the same if we remove both of these edges.

Proof: If the current player is in a losing position at u and they use the edge from u to v ,

the other player can use the edge going from v to u to send the current player back to

where they were.

Problem Author: Tom Rokicki 2022 North America Championship Solutions 23 / 38

Problem E: First Last

Solution

The reduced graph now only has at most three self-loops and no cycles of length 2, so it

only has cycles of length 3.

With memoization, we can compute for all such graphs and edge counts which positions

are winning and which positions are losing.

In practice, it looks like the complexity of this approach is O(n3). However, the actual

number of positions is far lower due to the small number of self-loops that interrupt

traversing the cycle of length 3.

Problem Author: Tom Rokicki 2022 North America Championship Solutions 24 / 38

Problem F: Four Square

Problem

You are given four rectangles. Can they be combined to form a square without any empty

gaps or overlaps?

Bounds: w , h ≤ 103.

Problem Author: Nick Wu 2022 North America Championship Solutions 25 / 38

Problem F: Four Square

Solution

If the sum of the areas is not a perfect square, the answer is NO.

Otherwise, we can brute force all possible tilings of such a square to see if any of them

result in a decomposition into the four given rectangles.

One observation that may help is that, for every such decomposition, it is always possible

to draw an axis-aligned line such that no rectangle crosses the line.

Problem Author: Nick Wu 2022 North America Championship Solutions 26 / 38

Problem G: Frequent Flier

Problem

A traveler has ai �ights scheduled on month i of n.

Over all periods of m consecutive months, the traveler must pay for at least k �ights

within the m-month period. If some period contains fewer than k �ights, the traveler must

pay for all such �ights.

Compute the minimum number of �ights the traveler must pay for.

Bounds: m, n ≤ 2 · 105, ai , k ≤ 109.

Problem Author: Lewin Gan 2022 North America Championship Solutions 27 / 38

Problem G: Frequent Flier

Solution (High-Level)

Consider each month in order.

While the traveler has not yet paid for k �ights within the current m-month window and

there are still �ights to pay for, �nd the most recent �ight that has not yet been paid for

and pay for it.

By an exchange argument, we can show that it is optimal to always pick the most recent

�ight.

Problem Author: Lewin Gan 2022 North America Championship Solutions 28 / 38

Problem G: Frequent Flier

Solution (Implementation)

Loop over each month, keeping track of how many �ights were paid for per month and

how many �ights are unpaid. Maintain a sliding window of size m for the number of �ights

paid for so far.

Maintain a sorted stack of unpaid �ights where the topmost element in the stack tracks

the number of unpaid �ights and month.

Use the sorted stack to count how many �ights to pay for to maintain having paid for k

�ights. Repeatedly pop o� elements from the stack until k �ights have been paid for or

there are no more unpaid �ights in the m-month window.

Other data structures can be used as well to maintain the unpaid �ights like a segment

tree or a balanced binary search tree.

Problem Author: Lewin Gan 2022 North America Championship Solutions 29 / 38

Problem H: Game Show Eliminations

Problem

You're given n contestants in a game show.

The second best performing person gets eliminated each round.

Compute the expected placements of all contestants.

Bounds: 2 ≤ n ≤ 1 000

Problem Author: Lewin Gan 2022 North America Championship Solutions 30 / 38

Problem H: Game Show Eliminations

Observations

This is a dp problem, the di�culty comes with creating an e�cient state.

There is no way for person i − k to ever beat person i .

State only needs to know who could possibly get second place, rest can be compressed.

The number of people who could possibly get second place is at most k , so we only need

to keep a bitmask of those k people somehow.

Problem Author: Lewin Gan 2022 North America Championship Solutions 31 / 38

Problem H: Game Show Eliminations

DP State formulation

Need to keep track of a bitmask of players, 1 is not eliminated, 0 is eliminated.

We can �x highest two numbered people �rst. Suppose second highest remaining person is

j . We only need to know bitmask of states of persons j − k + 1 to j . Everything else is

determined.

State is (below ,mask , above). This corresponds to following mask (lowest number person

is on the left).

1 . . . 1︸ ︷︷ ︸
below

mask︸ ︷︷ ︸
k−1

1︸︷︷︸
1

0 . . . 0︸ ︷︷ ︸
above

1︸︷︷︸
1

0 . . . 0︸ ︷︷ ︸
...

This is O(n22k) states, can reduce this to O(nk2k) by noticing if above > k , we can reuse

answer from above = k .

Problem Author: Lewin Gan 2022 North America Championship Solutions 32 / 38

Problem H: Game Show Eliminations

DP State Transitions

To transition, we need to know probability that each person is second place.

We can do this with another dp, and can cache results so we compute it at most once.

We can bucket people by �xing the �oor of the performance of each person. If there are x

people in the same bucket, then any ordering of those people are equally likely.

Overall, this adds O(k32k) runtime.

Problem Author: Lewin Gan 2022 North America Championship Solutions 33 / 38

Problem I: Power of Divisors

Problem

De�ne τ(x) to be the number of positive integer divisors of x .

Given an integer n, compute the smallest positive integer x such that xτ(x) = n, or report

that no such integer exists.

Bounds: 1 ≤ n ≤ 1018.

Problem Author: Nick Wu 2022 North America Championship Solutions 34 / 38

Problem I: Power of Divisors

Solution

In order for τ(x) to be valid, n must be a perfect τ(x)-th power!

Brute force all possible values of τ(x), and check if the implied value of x has exactly τ(x)
divisors.

To compute x , we can binary search for the value of x , taking care to avoid over�ow when

doing integer multiplication.

To compute τ(x), we can use O(
√
x) trial division.

Edge case: n = 1.

Problem Author: Nick Wu 2022 North America Championship Solutions 35 / 38

Problem J: Repetitive String Invention

Problem

Given a string s, compute the number of ways you can concatenate two non overlapping

substrings to make a repetitive string.

A repetitive string is a string with even length, and the �rst half equals the second half

Bounds: 2 ≤ |s| ≤ 800.

Problem Author: Lewin Gan 2022 North America Championship Solutions 36 / 38

Problem J: Repetitive String Invention

Observation

Handle case where two substrings are equal.

Handle case where two substrings have di�erent lengths. The longer substring must be of

the form ABA, the shorter one is B , where A and B can be any non-empty string (possibly

the same).

Problem Author: Lewin Gan 2022 North America Championship Solutions 37 / 38

Problem J: Repetitive String Invention

Solution

Precompute lcp[i][j] to be the longest common substring starting at index i and j .

This array can be used to compute case where two substrings are equal directly in O(n2).
Make sure that strings don't overlap.

For other case, �rst �x what B is in the longer substring, suppose it is the substring from

position a to b. For each other position c , we can create an array saying if we can start

shorter substring at that position (e.g. if lcp[a][c] ≥ b − a + 1).

For a �xed B , we can brute force what A is by �xing the position d that the longer

substring starts with. We need to check if lcp[d][c + 1] ≥ a − d . If so, then we count

positions c that don't overlap, which can be done e�ciently with pre�x sums.

Overall runtime is O(n3), but constant factor is very low (bounds are high so optimized

O(n4) fail).

Problem Author: Lewin Gan 2022 North America Championship Solutions 38 / 38

Problem K: Space Alignment

Problem

You are given a �le with n lines of code and you wish to replace every tab with exactly k

spaces.

The given �le must have consistent indentation - if a line of code is nested inside p pairs

of braces, there must be exactly p · i spaces that precede the �rst non-whitespace

character in the line. i must be the same over all lines.

Compute the smallest possible positive integer value of k , or report that it is impossible.

Bounds: 2 ≤ n ≤ 100. Each line starts with at most 1000 characters.

Problem Author: Andy Nguyen 2022 North America Championship Solutions 39 / 38

Problem K: Space Alignment

Observation

If there exists some valid solution, then the minimal such solution must have k ≤ 1000.

Proof: Consider two lines, one with t1 tabs and s1 spaces, and another with t2 tabs and s2

spaces. We need t1k + s1 = t2k + s2, or k =
s2 − s1

t1 − t2
. Since si ≤ 1000, k ≤ 1000.

Problem Author: Andy Nguyen 2022 North America Championship Solutions 40 / 38

Problem K: Space Alignment

Solution

Check each value of k from 1 to 103 and validate that the �le has consistent indenting.

Print the �rst value of k that works, otherwise print −1.
Possible edge case: It is not necessarily the case that the �rst opening brace is matched by

the last closing brace, so one may have to scan the entire �le beforehand to �nd a line

with a nonzero number of spaces or tabs to compute the value of i for a given value of k .

It is also possible to solve this problem algebraically without needing to brute force all

values of k . This solution, though faster asymptotically, involves more casework depending

on how many lines there are that constrain the number of spaces a tab can have.

Problem Author: Andy Nguyen 2022 North America Championship Solutions 41 / 38

Problem L: Splitting Pairs

Problem

Alice and Bob are playing a variant of Nim. Given n piles, the current player picks k ≤ n
2

nonempty piles and removes them. They then pick k piles, each with at least two stones,

and split each pile into two nonempty piles. The player who cannot move loses. Determine

who wins given optimal play.

Bounds: n ≤ 50, each pile contains at most 1012 stones.

Problem Author: Lewin Gan 2022 North America Championship Solutions 42 / 38

Problem L: Splitting Pairs

Observations

The only losing con�guration is when all piles have exactly one stone.

When n is even, analyzing small cases we see that a state seems to be winning if and only

if at least one pile has an even number of stones.

When n is odd, we see that having only piles with an odd number of stones is a su�cient

but not necessary constraint for the state to be a losing state. Dividing through values by

the largest power of 2 that divides all values, it seems to be the case that the state is

losing if and only if all piles have an odd number of stones after this reduction.

Problem Author: Lewin Gan 2022 North America Championship Solutions 43 / 38

Problem L: Splitting Pairs

Proofs

For the even n case, if all piles have an odd number of stones, it is impossible after one

move to still only have piles with an odd number of stones.

If there are no more than n
2
piles with an even number of stones, we split those piles into

odd-odd combinations and remove just as many odd piles.

If there are more than n
2
such piles, we split n

2
such piles into odd-odd combinations and

remove the other ones.

In the odd n case, we can see that if 2p divides all piles and 2p+1 does not, it is impossible

to return to a state where 2x divides all piles and 2x+1 does not.

Let 2p be the largest power of 2 that divides all piles. Since some pile is not divisible by

2p+1, there are at most n piles that are divisible by 2p+1. We can use the same logic in

the even case to split piles into 2p and x − 2p to return to a losing state.

Problem Author: Lewin Gan 2022 North America Championship Solutions 44 / 38

Problem M: Who Watches the Watchmen

Problem

There are n sentries in 3D space, each facing some direction.

We want every sentry to be pointing at some other sentry, and for each sentry to be

pointed at by exactly one sentry.

With cost 1, we can change the direction some sentry points in.

With cost 1 000, we can change the location of some sentry as long as it doesn't overlap

with any other sentry. The direction does not change in this operation - we need to incur

an additional cost of 1 to change its direction as well.

Compute the minimum cost to attain the desired state, or report that it is impossible.

Bounds: n ≤ 500.

Problem Author: Arnav Sastry 2022 North America Championship Solutions 45 / 38

Problem M: Who Watches the Watchmen

Initial Observations

When n = 1, it is obviously impossible.

Otherwise, it's always possible. We only need to move a sentry in one case, when n is odd

and all other sentries are collinear.

If n is even or some sentries are not collinear, we have a minimum cost matching problem -

we wish to minimize the number of sentries to rotate to meet the desired condition.

Connect sentry i to j with a zero-cost edge if i can see j right now, otherwise connect with

a cost of one if there is no other sentry on the line segment connecting i and j .

Problem Author: Arnav Sastry 2022 North America Championship Solutions 46 / 38

Problem M: Who Watches the Watchmen

The Collinear Case

When n is odd and all sentries are collinear, we must move one sentry. Since moving a

sentry is more expensive than rotating all sentries, it is never optimal to move more than

one sentry.

Brute force which sentry to move out of the line. When we move a sentry, we could form

a cycle with some subsegment of sentries and the moved sentry, all other sentries must be

paired o�. We need 3D ray intersection to determine the cost of that cycle. With pre�x

sums, we can compute for a �xed pre�x of sentries the minimum cost needed such that all

of those sentries are in some collection of paired cycles.

Problem Author: Arnav Sastry 2022 North America Championship Solutions 47 / 38

Problem M: Who Watches the Watchmen

Before Moving

After Moving

Total cost: 1 000.

Problem Author: Arnav Sastry 2022 North America Championship Solutions 48 / 38

