2018 ACM-ICPC North America Qualification Contest

Solution Outlines

The Judges

October 6, 2018

F M International Collegiate % programming
] % ICpC Programming Contest tools sponsor

~~~~ icpe.foundation

2018 ICPC North America Qualifier Contest

event
sponsor

The Judges NAQ 2018 solutions



B — Das Blinkenlights — First solved at 0:01

Description

Will two lights that blink at regular intervals (p and g seconds) blink at the
same time in the next s seconds?

That is, is there an integer 1 < t < s such that there are two other integers
m and n where n-g=m-p=1?

Problem Author: Greg Hamerly NAQ 2018 solutions



B — Das Blinkenlights — First solved at 0:01

Description

Will two lights that blink at regular intervals (p and g seconds) blink at the
same time in the next s seconds?

That is, is there an integer 1 < t < s such that there are two other integers
m and n where n-g=m-p=1?

Simple — because 1 < s < 10000, we can solve this by brute force.

We can also be more clever and use the least common multiple.

Problem Author: Greg Hamerly NAQ 2018 solutions



B — Das Blinkenlights — First solved at 0:01

Solution Strategy

Brute force approach:
@ Try all valuesof 1 <t <s
@ For each t, test whether (t mod p) = (¢t mod g) = 0.

o If any t works, the answer is yes.
Runs in O(s).

Faster alternative: find the least common multiple (LCM) of p and g:
o If LCM(p, q) < s, then the answer is yes.
o LCM(p, q) = p- q9/GCD(p, q)

@ GCD is the greatest common divisor, via Euclid’s algorithm.
Runs in O(1).

Problem Author: Greg Hamerly NAQ 2018 solutions



K — Run-Length Encoding, Run! — First solved at 0:03

Description

Encode: Count consecutive, repeated characters.
Decode: Duplicate characters based on the number of repetitions.

Problem Author: J. T. Guerin and K. Ericson NAQ 2018 solutions




K — Run-Length Encoding, Run! — First solved at 0:03

Description

Encode: Count consecutive, repeated characters.
Decode: Duplicate characters based on the number of repetitions.

Solution

| A\

Encode:
@ Increment a counter for each repeated character encountered.
@ On a new character, print the character and count.

Decode:

@ For each character-digit pair cd, output d copies of c.

N

Problem Author: J. T. Guerin and K. Ericson NAQ 2018 solutions



G — Left and Right — First solved at 0:15

Description

Find the lexicographically earliest n-permutation p[1..n| so that each
adjacent pair satisfies the L/R (smaller/greater) conditions.

Problem Author: Bowen Yu NAQ 2018 solutions



G — Left and Right — First solved at 0:15

Description

Find the lexicographically earliest n-permutation p[1..n| so that each
adjacent pair satisfies the L/R (smaller/greater) conditions.

Consider consecutive L's and R’s as groups. Greedily look ahead and make
decisions for the first two groups, trying to keep the permutation
lexicographically earliest.

Problem Author: Bowen Yu NAQ 2018 solutions



G — Left and Right — First solved at 0:15

Solution Strategy

@ Group each sequence of consecutive L's and R’s. For convenience we
can prepend a single R to the beginning and assume the robot starts
at a virtual leftmost house 0, so that we are always facing an R group
before an L group.

@ If the next R group has more than one R, move one step to the right.

@ If the next R group has only a single R, look at the L group following it
(If there is no more L group then just walk right). Suppose there are k
L's in that group. Let the robot move to the next (k + 1)-th position
first (the single R). Then take k single steps to the left (the k L’s).

@ Repeat the above until all directions are processed.

The solution takes linear time.

Problem Author: Bowen Yu NAQ 2018 solutions



L — Superdoku — First solved at 0:20

Description

Given a partially filled matrix, fill out the full matrix so that each number
from 1 to n appears in each row and column exactly once.

Problem Author: Yujie An NAQ 2018 solutions



L — Superdoku — First solved at 0:20

Given a partially filled matrix, fill out the full matrix so that each number
from 1 to n appears in each row and column exactly once.

Solution Sketch

One observation is that rows are quite independent. We should be able to
fill in each row independently.

Problem Author: Yujie An NAQ 2018 solutions



L — Superdoku — First solved at 0:20

Solution Strategy

The only way that will result in a NO is that the given partially filled matrix
is invalid. Otherwise there is always a solution. This can be proved using
Hall's marriage theorem, and the solution can then be found by a bipartite
graph matching for each row.

Problem Author: Yujie An NAQ 2018 solutions



L — Superdoku — First solved at 0:20

Proof
Suppose that the previous k rows are valid, and now we are going to fill the
(k + 1)st row. We use a set C = {cy,...,cy} to represent n columns, and

f(ci) to represent the set of valid numbers that can be filled in the ith
column.

We know that |f(c;j)| = n — k for all i. Therefore, if we allow the same
number to be counted multiple times, then ||J f(ci)| = (n—k)|C’| for
any subset C’ of C.

In order to show that the Hall's condition holds, we need to prove that the
number of distinct elements in .../ f(ci) is greater than or equal to |C’|
for all C'.

We know that each element will appear in |J..c f(ci) for at most n — k
times, because the previous k rows are valid.

Thus, for (n — k)|C’| given elements, there are at least

(n—k)|C'|/(n — k) =|C’| of them are distinct. Thus Hall's condition
holds for all C’. Therefore, a perfect matching always exists.

Problem Author: Yujie An NAQ 2018 solutions

ceC’




L — Superdoku — First solved at 0:20

Solution

First we need to check if the given partially filled matrix is valid. If so, the
answer is always YES.

After that, go through each row in sequential order, and run a bipartite
graph matching on each row.

@ The matching is between the n numbers and n columns, allowing
number / to match column j only if it has not been used previously in
that column.

@ Find any matching for that row, and update the matrix.

@ Remove each number from the matched column’s set of possible
numbers.

@ Do this until the whole matrix is filled.

The total time complexity is O(n*).

Problem Author: Yujie An NAQ 2018 solutions



A — Bingo Ties — First solved at 0:27

Description

Given a set of n bingo cards, is there any sequence of numbers called that
will result in a tie (in a row) between two cards?

Problem Author: Mike Domaratzki NAQ 2018 solutions



A — Bingo Ties — First solved at 0:27

Description

Given a set of n bingo cards, is there any sequence of numbers called that
will result in a tie (in a row) between two cards?

@ For each possible bingo between two cards, consider shortest sequence
s of numbers that results in that bingo.

@ Check if any proper prefix of s results in a bingo on another card.

@ If not, report the tie.

Problem Author: Mike Domaratzki NAQ 2018 solutions



A — Bingo Ties — First solved at 0:27

Solution Strategy

© Find set S of all numbers that appear on more than one card.

@ Foreachs e S:
@ Find all pairs of cards c1, ¢ that both contain s.
@ For each pair, construct list L of numbers that appear in the same row

as s in either ¢; or ¢.
© For all ¢ cards other than ¢;, ¢p, determine if L\ {s} results in a bingo

on card c.
O If no card results in a bingo, then ¢, ¢, is a tie.

© Of all pairs of cards that generate a tie, report the pair that is the
smallest lexicographically.

@ If no pair is a tie, report this.

Runtime: O(|S|n%) where n is the number of cards.

Problem Author: Mike Domaratzki NAQ 2018 solutions



E — Fruit Slicer — First solved at 0:

Description

Determine how many of the n < 100 unit circles can a single infinite line
intersect or touch.

Problem Author: Bowen Yu NAQ 2018 solutions



E — Fruit Slicer — First solved at 0:29

Determine how many of the n < 100 unit circles can a single infinite line
intersect or touch.

There always exists an optimal line that is externally tangent to two circles.
Enumerate O(n?) candidate lines, and for each of them linearly check how
many circles it intersects or touches.

Problem Author: Bowen Yu NAQ 2018 solutions



E — Fruit Slicer — First solved at 0:

Solution Strategy

@ Enumerate an ordered pair of circles (i,/) and identify their external
tangent line on the right side of the ray from the center of circle i to
the center of circle j.

@ For each external tangent line, linearly enumerate every circle, and
check if the line intersects or touches this circle.

The solution takes O(n®) time.

Problem Author: Bowen Yu NAQ 2018 solutions



E — Fruit Slicer — First solved at 0:29

Work in Integer Space

@ We can multiply every coordinate by 100 and handle everything with
integer.

@ The actual tangent line may have irrational coefficients. To have the
solution work in integer space, we can use the line [ : ax + by + ¢ =0
that passes the centers of two circles to check intersection.

@ A circle intersects or touches the external tangent if the distance from
its center (xc, yc) to I is between [0,2]. We can thus check if
laxc + byc + ¢|/Va% + b? < 2, which is equivalent to
(axc + bye + ¢)? < 4(a% + b2).

@ Be careful with integer overflow when numbers are multiplied by 100
and then squared.

Problem Author: Bowen Yu NAQ 2018 solutions



D — Froggie — First solved at 0:33

Description

Given a road description, starting position, and sequence of hops (Up,
Down, Left, Right), determine if Froggie safely crosses the road or is
squished by a moving car.

Problem Authors: K. Ericson and J. T. Guerin NAQ 2018 solutions



D — Froggie — First solved at 0:33

Description

Given a road description, starting position, and sequence of hops (Up,
Down, Left, Right), determine if Froggie safely crosses the road or is
squished by a moving car.

Simulate Froggie's hops and the moving cars to determine whether Froggie
enters the path of a moving car.

Problem Authors: K. Ericson and J. T. Guerin NAQ 2018 solutions



D — Froggie — First solved at 0:33

Solution Strategy

@ During one time step, a car at column ¢ moving right at speed s
makes columns [c + 1, ¢ + s| unsafe for Froggie.

e For cars moving left, similar logic applies.

Froggie starts at column P, and makes hops: hy, hy, ..., hy.

At time /, Froggie hops in the grid according to hop h;.

Froggie is safe in column ¢ of lane £ if no car in the lane is unsafe for
her. That is, no car passes through that location during that time step.

Froggie is “safe” at completion if she exits the top of the table.

Problem Authors: K. Ericson and J. T. Guerin NAQ 2018 solutions



D — Froggie — First solved at 0:33

Solution Strategy

@ During one time step, a car at column ¢ moving right at speed s
makes columns [c + 1, ¢ + s| unsafe for Froggie.

e For cars moving left, similar logic applies.

o Froggie starts at column P, and makes hops: hy, hy, ..., hy.

At time /, Froggie hops in the grid according to hop h;.

Froggie is safe in column ¢ of lane £ if no car in the lane is unsafe for
her. That is, no car passes through that location during that time step.

@ Froggie is “safe” at completion if she exits the top of the table.

Implementation

The simulation can be conducted by either:

@ maintaining a 2D array of symbols (positions of all cars), or

@ determining unsafe columns just for Froggie's current lane.

Problem Authors: K. Ericson and J. T. Guerin NAQ 2018 solutions




J — Peg Game for Two — First solved at 0:42

@ Two player game on a 5-row triangular game board.

@ Game starts with one open hole and 14 pegs assigned numeric values.
@ Players take turns making valid jumps on straight lines.
°

In order to jump, peg A must be adjacent to peg B, and the location
in the same direction from peg A to peg B adjacent to peg B must be
a hole.

@ After the jump, peg B is removed, and peg A goes to the location that
was previously a hole.

@ The player making the jump adds the product of peg A and peg B to
his/her score.

@ Goal: To maximize the difference of score between you and your
opponent.

v

Problem Author: Arup Guha NAQ 2018 solutions



J — Peg Game for Two — First solved at 0:42

Example of Move Choices

Problem Author: Arup Guha NAQ 2018 solutions



J — Peg Game for Two — First solved at 0:42

o Key realization is that the actual number of game paths is small
enough to allow a brute force solution.

@ The other helpful idea in simplifying the solution is that instead of a
min-max tree, since we are trying to maximize difference in score, at
each level of the game tree, we can perform the same maximization
function, instead of keeping track of what level we are on and
alternately minimizing or maximizing.

Problem Author: Arup Guha NAQ 2018 solutions



J — Peg Game for Two — First solved at 0:42

Solution Strategy

@ Brute Force Idea: Try each possible move, and take the best.

@ Let f(g) be your score on board g. For each possible jump, ji, let the
product of the pegs involved in the jump be p; and the ensuing board
position be g;.

@ Then, for move i, our potential difference in score is p; — (g;)-

@ You score p; points; then your opponent also tries to maximize their
score. Keep track of their best difference during recursion. From your
viewpoint, this value should be subtracted from your score, not added.

o Calculate each of these options and over all i/, maximize p; — f(g;j).

@ For a single starting board position, there are relatively few games that
can be played.

@ Memoization helps, but is not necessary with the small board size.

v

Problem Author: Arup Guha NAQ 2018 solutions



J — Peg Game for Two — First solved at 0:42

Maximizing Over Multiple Options

3
10
42 - f 10 8
5634
3 8667’
1.6
£ 1ﬁ8 = max ( )
5 043™4
9 8 6 6 7 3
1 6
12 - £ 17 8
5400
9 8 6 6 7

Problem Author: Arup Guha NAQ 2018 solutions



| — Monitoring Ski Paths — First solved at 0:55

Description

Given: Paths in a forest of rooted trees, each path having the property
that one endpoint is a descendant of the other.

Goal: Find the fewest nodes X to cover all paths.
ie. PN X # (0 for each path P.

Problem Author: Zachary Friggstad NAQ 2018 solutions



| — Monitoring Ski Paths — First solved at 0:55

Description

Given: Paths in a forest of rooted trees, each path having the property
that one endpoint is a descendant of the other.

Goal: Find the fewest nodes X to cover all paths.
ie. PN X # (0 for each path P.

Solution

Greedy
Repeat until all paths are covered:

@ Find an uncovered path P where no other path ends below top(P).
e Add top(P) to X.

Must also implement this efficiently.

4

Problem Author: Zachary Friggstad NAQ 2018 solutions



| — Monitoring Ski Paths — First solved at 0:55

Solution Strategy

Claim: If v is the top of a path P and no other path ends below v, then v
lies in some optimal solution.

Proof: Some node x of P must be covered in the optimum. But v covers
all the paths that x covered too! So we might as well use v instead of x.

Problem Author: Zachary Friggstad NAQ 2018 solutions



| — Monitoring Ski Paths — First solved at 0:55

Algorithm: Consider the nodes of a tree T in post-order traversal order
(eg. using a DFS). If some uncovered path P has top(P) = v, then use v.

To quickly check if such a path is not covered, every time we pick some
node w we mark all nodes below w. Then a path P is not covered at v if
and only if bottom(P) is not marked.

When we choose v, mark all nodes below it using a DFS, making sure to
not recurse on already-marked nodes.

Can be implemented to run in linear time.

Problem Author: Zachary Friggstad NAQ 2018 solutions



C — Ebony and Ivory — First solved at 1:06

Description

Given a right-hand music piece that needs to be played with 5 fingers, find
the cost of an ergonomically optimal assignment of keys to fingers.
Ergonomics is determined by how difficult it is to play a particular
combination of keys with a particular combination of fingers. The cost of
playing a combination depends on the number of half steps. Furthermore, a
distinction is made between black and white keys, thus requiring 4 tables
with the costs for each combination of black and white to be given.

Problem Author: Godmar Back NAQ 2018 solutions



C — Ebony and Ivory — First solved at 1:06

Description

Given a right-hand music piece that needs to be played with 5 fingers, find
the cost of an ergonomically optimal assignment of keys to fingers.
Ergonomics is determined by how difficult it is to play a particular
combination of keys with a particular combination of fingers. The cost of
playing a combination depends on the number of half steps. Furthermore, a
distinction is made between black and white keys, thus requiring 4 tables
with the costs for each combination of black and white to be given.

Standard dynamic programming. Dynamic programming state is D; ; -
minimum cost of playing sequence of keys ag . .. a; such that a; is played
with finger j.

Problem Author: Godmar Back NAQ 2018 solutions



C — Ebony and Ivory — First solved at 1:06

Solution Strategy

DP recurrence is:

mink€[175] Di—l,k aF ck,j(aj — aj_l) if i>0A aj 7& aj—1
D,',J': D;_lJ if i>0/\aj:aj_1
0 if i=0

where ¢, ;(s) is cost read from appropriate table for s half steps, skipping
pairs (k,j) for which no entry exists in the respective table. The table
chosen depends on whether (a;j_1, a;) is a white/white, black/white,
white/black, or black/black key pair. If s <0, use ¢j x(—s) instead.

Final answer is min; D;_; j and complexity is O(L) where L is the number
of keys. For more details, see Hart, Bosch, and Tsai [1].

Problem Author: Godmar Back NAQ 2018 solutions



H — Longest Life — First solved at 1:53

@ Normally you will live to be n seconds old.

@ But there are p pills that come to market. Pill p; comes to market at
time t; and allows you to age y; seconds over the real span of x;.

@ You can be on one pill at a time and the only drawback to switching
to a pill from no pill or another pill is that you automatically age ¢
seconds when you switch.

e Goal: Maximize how long you live.

Problem Author: Arup Guha NAQ 2018 solutions



H — Longest Life — First solved at 1:53

Visualization of Taking a Pill

Your Age
n
0C +Toke pill
1
No pill ]
i Real Time
ti n'

Problem Author: Arup Guha NAQ 2018 solutions



H — Longest Life — First solved at 1:53

Initial Solution Ideas

@ Complete Brute Force — Try all combinations of pills.

o With p < 100000 this creates an absurd 2190900 nymber of
combinations to check. So this isn't viable.

@ Straight Forward Dynamic Programming: For each pill /, we want to
calculate the longest we'd live if it were the last pill we changed to.

o To do this, we know that we'd have to switch from another pill j to it,
where j < J.

e We could simply try each possible j < i, and determine which gave us
the maximal answer for taking pill /.

o Issue: with the double loop structure, the run time is O(p?).

e For our upper bound on p, this is still too slow to run in time.

Problem Author: Arup Guha NAQ 2018 solutions



H — Longest Life — First solved at 1:53

Solution Speed Up Ideas
@ The effect of each pill can be visualized as a line.
@ We only care to build off of the "best" lines.

@ Key realization: If we are only comparing two lines, eventually the one
with the better (in this case lower) slope will overtake the other line at
some cross over point. From that point on, that pill will be better.

@ Thus, there's a fixed window of contiguous time where any individual

pill will be optimal, and each of these windows form a list of time
periods where different pills with decreasing slopes will take over.

Problem Author: Arup Guha NAQ 2018 solutions



Visualization of Solution S

Amt. Aged

% 4
=

i beats 2

| I Real Time
2 beats 1 3 beats 2
No Pill Talke Pill 1 Take | Take Pill4
Pill 2
v

Problem Author: Arup Guha NAQ 2018 solutions



H — Longest Life — First solved at 1:

Solution Strategy

@ Maintain a deque which stores which pills are optimal for which ranges
of time.

@ For each pill b (in increasing time order):
o If b's slope isn't lower than all the previous ones, skip it.
o Otherwise, remove from the front all pills whose optimal period has
passed.
Then, calculate when b overtakes the pill e at the end of the deque.
o If b overtakes e before e is optimal, remove e from the deque.
o Continue this process until we get to a pill in the deque for which this
isn’t the case.

Let s be the time when b overtakes e.
Adjust the range of e to end at s.
Add b to the back of the deque, with range [s, c0).

Problem Author: Arup Guha NAQ 2018 solutions



H — Longest Life — First solved at 1:53

Run Time Analysis

@ Outer loop runs through p pills.

@ Two inner loops potentially remove 0 or more items from the front or
back of the deque at each pass.

@ Each pill gets pushed onto the deque at most once.
@ Since there are at most p pushes, there can be at most p pops.
@ Thus, the total runtime is O(p).

Problem Author: Arup Guha NAQ 2018 solutions



M — Triangular Clouds — First solved at 3:49

Description

Is the union of a set of triangles the same as the union of another set of
triangles? Complications include the large magnitude of coordinates (10°)
and large number of triangles (10°).

Adjacent triangles may not share vertices.
Region could have holes.

2ad- N

Problem Author: Peter A. Steele NAQ 2018 solutions




M — Triangular Clouds — First solved at 3:49

Description

Is the union of a set of triangles the same as the union of another set of
triangles? Complications include the large magnitude of coordinates (10°)
and large number of triangles (10°).

Solution 1: Trace triangles of set A in counterclockwise direction, and
triangles of set B in clockwise direction. Ensure all line segments cancel.
Solution 2: Hash triangles by taking the double integral of hash(x,y) across
a triangle. Sum the hashes to get the hash of the entire set, and compare
the resulting hashes.

Problem Author: Peter A. Steele NAQ 2018 solutions



M — Triangular Clouds — First solved at 3:49

Solution 1 Strategy:

As a thought exercise, consider the problem in one instead of two
dimensions.

e For example, [1,3) U [3,5) = [1,5).

@ We can make ‘start’ and ‘end’ events, such as (1, start), (3, end), (3,
start), and (5, end). Then, the (3, start) and (3, end) events will
cancel.

@ To check that both sets are equal, add [1,5) with negative orientation:
[1,3)U[3,5)\[1,5) = 0.

e (1, start), (3, end), (3, start), (5, end), (5, start), (1, end) completely
cancel.

Problem Author: Peter A. Steele NAQ 2018 solutions



M — Triangular Clouds — First solved at 3:49

Solution 1 Strategy:

Now consider 2D.

@ By tracing each triangle clockwise, we can assign each line segment a
direction. Thus, when two triangles both share an edge, the line
segment that is shared would cancel.

@ After canceling all the shared line segments, left with canonical

oriented boundary edges:
AN AN
\/ > \/

Problem Author: Peter A. Steele NAQ 2018 solutions




M — Triangular Clouds — First solved at 3:49

Solution 1 Implementation:

Efficiency is very important.

@ Place line segments into buckets based on line parameters
(ax + by = ¢), O(N) time total.

@ For each bucket, create start and end event for each segment, and sort
the events. Do linear sweep to cancel events. Ensure that the

remaining line segments after canceling are equal for Jerry and Garry.
O(N log N) total.

@ Most elegant solution: Overlay both sets of triangles, with Garry
clockwise and Jerry counterclockwise. Ensure there are no segments
left after canceling.

Problem Author: Peter A. Steele NAQ 2018 solutions



M — Triangular Clouds — First solved at 3:49

Solution 2 Strategy:

Goal: Hash the sets of triangles in such a way that if AU B = C then
Hash(A) + Hash(B) = Hash(C).

@ In order to make this true, we make our hash function the
double-integral across the entire area, since addition is
associative/commutative.

e Example: Let hash(X,Y) = 1. The double integral across the triangle
is the area of the triangle. Thus, if AU B = C, then
hash(A) + hash(B) = hash(C) since A and B are disjoint.

@ Issue: Unfortunately the converse, Hash(A) + Hash(B) = Hash(C)
does not imply AU B = C, which is what we need.

@ So an intellegent hash function needs to be used, to get as close to
this statement as possible.

v

Problem Author: Peter A. Steele NAQ 2018 solutions



M — Triangular Clouds — First solved at 3:49

Solution 2 Picking the hash:

If the hash is too simple, it will have collisions.
@ hash(X,Y) =1 is vulnerable to sliding a triangle over by 1.

@ hash(X,Y) = X is vulnerable because sliding the triangle up 1 breaks
it, and all triangles symmetric over the X axis hash to 0.

@ If the hash is too complex, it is too hard to double-integrate during
the contest.

@ To make a simpler hash work, apply linear transformations /
translations to the judge data to reduce the chance of collision.

o Hash(X™ + X("=1) 4 4 1) is used by the judge solution, but it
requires random rotation to avoid vertical translation.

Problem Author: Peter A. Steele NAQ 2018 solutions



M — Triangular Clouds — First solved at 3:49

Solution 2 Complexity/Correctness:

o Complexity is O(N), because we hash each triangle once and add the
hashes.

@ Hash collisions based on sheer number of comparisons is very unlikely;
even a 32-bit hash should be sufficient if well distributed.

Problem Author: Peter A. Steele NAQ 2018 solutions



M — Triangular Clouds — First solved at 3:49

General Pitfalls

@ Avoid monte-carlo, doubles, and sampling techniques, these will be
hard to work with 108 possible points.

o O(N?) solutions will run out of time, so geometry solutions involving
merging triangles are quite painful and unlikely to pass.

o Consider edge cases where many triangles meet at the same point,
separate components, and more.

@ Don't let this problem take up several hours during the contest!

Problem Author: Peter A. Steele NAQ 2018 solutions



F — LCM Tree — Not solved during the contest!

Description

Given n < 25 nodes with positive integer numbers, count the arrangements
of these nodes in a binary tree, so that the LCM of the numbers on every
pair of children equals their parent’s number.

Problem Author: Bowen Yu NAQ 2018 solutions



F — LCM Tree — Not solved during the contest!

Given n < 25 nodes with positive integer numbers, count the arrangements
of these nodes in a binary tree, so that the LCM of the numbers on every
pair of children equals their parent’s number.

Use dynamic programming to keep track of which set of nodes are yet to
be added to the tree. Choose one pair of nodes at a time to append to one
of the tree leaves.

V.

Problem Author: Bowen Yu NAQ 2018 solutions



F — LCM Tree — Not solved during the contest!

Solution Strategy

o Create a bitmask to represent the nodes. A node’s bit is on means the
node has been added to the tree, but we have NOT yet decided its
two children. If we have appended two children to a node, then that
node’s bit is turned off. Initially, only the largest node has its bit on.

@ In each step of the dynamic programming, we find the a node z that
has its bit on. We enumerate two children x and y that satisfy
LCM(x,y) = z and append them to z. After that, z will have its bit
off, and x and y will have their bits on. Alternatively, we can decide
not to give z any children.

@ Repeat the step above until all nodes have their bits off.

Problem Author: Bowen Yu NAQ 2018 solutions



F — LCM Tree — Not solved during the contest!

Optimizations

A naive implementation of the above strategy will timeout, as O(2") DP
states plus enumerating two children for every state takes O(n?2") time.
Several optimizations can be applied to significantly speed up the DP:

@ The largest node among a subtree must be the root of the subtree.
We can order the nodes decreasingly, and always choose the largest
node that has its bit on to be z.

@ z can be taken out from the bitmask after we decide its children. The
size of the bitmask is reduced by one after each DP transition. The
length of the bitmask can be kept in the bitmask using a highest bit.

o If the largest node remaining in the bitmask has its bit off, we stop
immediately because there is no chance to add this node to the tree.

@ Group all nodes by their numbers. When there are multiple nodes of a
same number, always take the first node, but multiply the DP count
by the number of nodes in the group.

Problem Author: Bowen Yu NAQ 2018 solutions




F — LCM Tree — Not solved during the contest!

Running Time Analysis

@ Initially the bitmask has size 25, and one of the bits is on.

@ After each transition, one bit is turned off, and zero or two bits are
turned on. The size of the bitmask is reduced by one. The number of
bits that are on can either increase by one, or decrease by one.

@ If there have been i nodes removed from the bitmask, then the
bitmask has size 25 — i, and at most / + 1 bits among them are on.
Therefore the total number of states that can be visited is
225 'H o C(25 — i, /). Additionally, we are enumerating two
children for each state, which has a cost of (25 — i —j)2.

o The total cost is Y700 Y105 C(25 — i,j)(25 — i — j)? ~ 6.888 x 107.
The algorithm actually runs faster because many states are invalid by
not satisfying the LCM condition.

Problem Author: Bowen Yu NAQ 2018 solutions



References

[1] Melanie Hart, Robert Bosch, and Elbert Tsai.
Finding optimal piano fingerings.
The UMAP Journal, 21(2):167-177, 2000.

Problem Author: Bowen Yu NAQ 2018 solutions



