
Colorful Trees

First, we can make the tree rooted for convenience.

Then, given an edge between a vertex and its parent like (v, p), we count the number of
same-color pairs that use this edge for their connectivity.

Let's say cnt[c] is the total number of vertices with color c, and cnt[v][c] is the number of
vertices in the subtree of v (all direct and indirect descendants of v, inclusive).

Clearly, the answer for the edge (v, p) will be:

Answer_(v, p) = Sum(cnt[v][c] * (cnt[c] - cnt[v][c])) for all possible colors

We observe that in cases where cnt[v][c] == 0 or cnt[v][c] == cnt[c], this term is equal to 0,
so we can ignore these cases.

We can build cnt[v] by merging cnt[u] for all children u of v. These merges can be done using
a DSU trick that results in O(n log n) operations on our collections. We can use either hash
maps or tree maps for this.

Consider the cnt[v] for an imaginary vertex. As we are adding new vertices with any colors
to this set, we can maintain the value of:

Sum(cnt[v][c] * (cnt[c] - cnt[v][c])) for all possible colors

in a variable like f[v]. In this way, we won't need to iterate over all existing colors in the set
to calculate the final value for that vertex; instead, we can just use the value of f[v].



Here is a sample C++ code:

void merge(int v, int u) { // merge u into v

if (cnv[v].size() < cnv[u].size()) {

cnv[v].swap(cnv[u]);

swap(f[v], f[u]);

}

for (auto [x, cnx] : cnv[u]) {

int av = cnv[v][x] * (cnt[x] - cnv[v][x]);

f[v] -= av;

cnv[v][x] += cnx;

av = cnv[v][x] * (cnt[x] - cnv[v][x]);

f[v] += av;

if (av == 0) { // Not necessary

cnv[v].erase(x);

}

}

}

void dfs(int v, int par = -1) {

cnv[v][c[v]] = 1;

f[v] = cnt[c[v]] - 1;

for (auto [u, i] : g[v]) {

if (u != par) {

dfs(u, v);

ans[i] = f[u];

merge(v, u);

}

}

}


