
Nordic Collegiate Programming Contest
NCPC 2017

October 7, 2017

2017

Problems

A Airport Coffee
B Best Relay Team
C Compass Card Sales
D Distinctive Character
E Emptying the Baltic
F Fractal Tree
G Galactic Collegiate Programming Contest
H Hubtown
I Import Spaghetti
J Judging Moose
K Kayaking Trip

Do not open before the contest has started.



Advice, hints, and general information

• The problems are not sorted by difficulty.

• If you think some problem is ambiguous or underspecified, you may ask the judges for a
clarification request through the Kattis system. The most likely response is “No comment,
read problem statement”, indicating that the answer can be deduced by carefully reading
the problem statement or by checking the sample test cases given in the problem.

• Your submissions will be run multiple times, on several different input files. If your
submission is incorrect, the error message you get will be the error exhibited on the first
input file on which you failed. E.g., if your instance is prone to crash but also incorrect,
your submission may be judged as either “wrong answer” or “run time error”, depending
on which is discovered first.



Problem A
Airport Coffee

Problem ID: airportcoffee
Time limit: 6 seconds

Picture by atulknareda on Pixabay

Jonna often travels to programming contests by airplane. Since
she lives in Helsinki, she often has to first travel to some large
airport hub, such as Copenhagen Airport, where she takes a new
flight. Unfortunately, flights are often very late. This is especially
problematic when taking a connecting flight.

As it happens, Jonna just landed at Copenhagen Airport, try-
ing to make her connection to Heathrow Airport. Since her flight
from Helsinki was delayed, she must walk very quickly from her
arrival gate to the new departure gate. Normally, Jonna walks
at a speed of a centimeters per second. To make matters more
difficult, Jonna has a slight coffee addiction, and will walk very
sluggishly while not drinking coffee. While the coffee itself does not really affect the walking
speed, the resulting grumpiness from not drinking coffee trumps even the worries of a missed
flight. When she is drinking coffee, her speed increases to b centimeters per second.

The distance between Jonna’s arrival and departure gates is ` centimeters, and along the way
there are n small coffee carts where Jonna can buy a cup of coffee. When buying a cup of coffee
(a practically instant endeavour nowadays, thanks to contactless card payments), she first waits
for t seconds, in order to let it cool down. During this time, she will keep walking at the slower
pace. Immediately after t seconds pass, she starts drinking the coffee. It takes exactly r seconds
to finish the coffee (during which she walks at the faster pace). When the coffee is finished, she
will again walk slower.

Note that Jonna is carrying a bag with her left hand, so she can only carry a single cup of
coffee at a time. While a bit wasteful, she may throw away a cup that still contains some amount
of coffee to purchase a brand new cup.

Can you help Jonna determine where to purchase her coffee(s), in order to get to her departure
gate as quickly as possible?

Input
The first line of input contains five integers `, a, b, t and r, where:

• 1 ≤ ` ≤ 1011 is the distance between Jonna’s arrival and departure gates in centimeters.

• 1 ≤ a < b ≤ 200 are Jonna’s walking speeds in centimeters per second when she is not
and when she is drinking coffee, respectively.

• 0 ≤ t ≤ 300 is the number of seconds Jonna must wait until she can drink her coffee.

• 1 ≤ r ≤ 1200 is the number of seconds it takes for Jonna to drink a cup of coffee.

Then follows a line containing an integer 0 ≤ n ≤ 500 000, the number of coffee carts between
the two gates. The third and last line of input contains n integers – the positions of the coffee
carts, given in ascending distance from the departure gate in centimeters (i.e., each number is
between 0 and `, inclusive). No two coffee carts are in the same postion.

NCPC 2017 Problem A: Airport Coffee 1

https://pixabay.com/en/coffee-airport-travel-business-787927/


Output
First, output a line containing the number of carts where Jonna should purchase coffee. Next,
output a single line containing the indices of the coffee carts where Jonna should buy coffee.
These indicies should be between 0 and n− 1, and correspond to the order of the coffee carts in
the input. The indices may be output in any order, but each index must be output at most once.

Your answer will be accepted if the time that the proposed coffee purchasing plan takes is
within an absolute or relative error of at most 10−9 compared to the optimum time.

0 100 000

Figure A.1: Illustration of Sample Input 1 and a possible solution. The coffee shops Jonna uses
are marked with triangles. The portions where she walks faster due to the effects of coffee are
marked with a dotted line. The first coffee cools down 11 000 centimeters from the starting
position, and the second after 61 000 centimeters from the starting position.

Sample Input 1 Sample Output 1

100000 100 138 60 300
5
5000 20000 50000 55000 75000

2
0 3

Sample Input 2 Sample Output 2

100000 78 86 9 560
4
13505 69705 87448 92090

2
0 1

NCPC 2017 Problem A: Airport Coffee 2



Problem B
Best Relay Team

Problem ID: bestrelayteam
Time limit: 1 second

Picture by Fernando Frazão/Agência Brasil, cc by

You are the coach of the national athletics team and need
to select which sprinters should represent your country
in the 4× 100 m relay in the upcoming championships.

As the name of the event implies, such a sprint relay
consist of 4 legs, 100 meters each. One would think that
the best team would simply consist of the 4 fastest 100
m runners in the nation, but there is an important detail
to take into account: flying start. In the 2nd, 3rd and
4th leg, the runner is already running when the baton is
handed over. This means that some runners – those that
have a slow acceleration phase – can perform relatively better in a relay if they are on the 2nd,
3rd or 4th leg.

You have a pool of runners to choose from. Given how fast each runner in the pool is, decide
which four runners should represent your national team and which leg they should run. You are
given two times for each runner – the time the runner would run the 1st leg, and the time the
runner would run any of the other legs. A runner in a team can only run one leg.

Input
The first line of input contains an integer n, the number of runners to choose from (4 ≤ n ≤ 500).
Then follow n lines describing the runners. The i’th of these lines contains the name of the i’th
runner, the time ai for the runner to run the 1st leg, and the time bi for the runner to run any of
the other legs (8 ≤ bi ≤ ai < 20). The names consist of between 2 and 20 (inclusive) uppercase
letters ‘A’-‘Z’, and no two runners have the same name. The times are given in seconds with
exactly two digits after the decimal point.

Output
First, output a line containing the time of the best team. The precise formatting of the time is
not important. Then output four lines containing the names of the runners in that team. The
first of these lines should contain the runner you have picked for the 1st leg, the second line the
runner you have picked for the 2nd leg, and so on. Any solution that results in the fastest team is
acceptable.

Sample Input 1 Sample Output 1

6
ASHMEADE 9.90 8.85
BLAKE 9.69 8.72
BOLT 9.58 8.43
CARTER 9.78 8.93
FRATER 9.88 8.92
POWELL 9.72 8.61

35.54
CARTER
BOLT
POWELL
BLAKE

NCPC 2017 Problem B: Best Relay Team 3

https://commons.wikimedia.org/wiki/File:Bolt_se_aposenta_com_medalha_de_ouro_no_4_x_100_metros_1039081-19.08.2016_frz-1009.jpg


Sample Input 2 Sample Output 2

9
AUSTRIN 15.60 14.92
DRANGE 15.14 14.19
DREGI 15.00 14.99
LAAKSONEN 16.39 14.97
LUNDSTROM 15.83 15.35
MARDELL 13.36 13.20
POLACEK 13.05 12.55
SANNEMO 15.23 14.74
SODERMAN 13.99 12.57

52.670000
MARDELL
POLACEK
SODERMAN
DRANGE

NCPC 2017 Problem B: Best Relay Team 4



Problem C
Compass Card Sales
Problem ID: compasscard

Time limit: 6 seconds

Picture via Wikimedia Commons, public domain

Katla has recently stopped playing the collectible card
game Compass. As you might remember, Compass
is a game where each card has a red, a green and a
blue angle, each one between 0 and 359, as well as an
ID. Since she has stopped playing, Katla has decided
to sell all her cards. However, she wants to keep her
deck as unique as possible while selling off the cards.
Can you help her figure out the order in which she
should sell the cards?

To decide how unique a card is in the deck, she
proceeds as follows. For each of the three colors she
finds the closest other card in both directions, and then
computes the angle between these two other cards.
For instance if she has three cards with red angles 42,
90 and 110, then the uniqueness values of their red
angles are 340, 68, and 312, respectively. If two cards A and B have the same angle, B is
considered the closest to A in both directions so that the uniqueness value of A (and B) for that
color is 0.

By summing the uniqueness values over the three colours, Katla finds how unique each card
is. When selling a card, Katla sells the currently least unique card (smallest uniqueness value).
If two cards have the same uniqueness value, she will sell the one with the higher ID first. After
each card is sold, the uniqueness values of the remaining cards are updated before selling the
next card.

Input
The first line of input contains an integer n, the number of cards (1 ≤ n ≤ 105). Then follows
n lines. Each of these n lines contains 4 integers r, g, b, id (0 ≤ r, g, b < 360, 0 ≤ id < 231),
giving the red, green and blue angles as well as the ID of a card. No two cards have the same ID.

Output
Output n lines, containing the IDs of the cards in the order they are to be sold, from first (least
unique) to last (most unique).

Sample Input 1 Sample Output 1

3
42 1 1 1
90 1 1 2
110 1 1 3

2
3
1

NCPC 2017 Problem C: Compass Card Sales 5

https://commons.wikimedia.org/wiki/File:Compass_rose_nesw.svg


Sample Input 2 Sample Output 2

4
0 0 0 0
120 120 120 120
240 240 240 240
0 120 240 2017

2017
240
120
0

NCPC 2017 Problem C: Compass Card Sales 6



Problem D
Distinctive Character

Problem ID: distinctivecharacter
Time limit: 4 seconds

Picture by Fairytalemaker on Pixabay

Tira would like to join a multiplayer game with
n other players. Each player has a character with
some features. There are a total of k features, and
each character has some subset of them.

The similarity between two characters A and
B is calculated as follows: for each feature f , if
both A and B have feature f or if none of them
have feature f , the similarity increases by one.

Tira does not have a character yet. She would
like to create a new, very original character so that
the maximum similarity between Tira’s character
and any other character is as low as possible.

Given the characters of the other players, your task is to create a character for Tira that fulfils
the above requirement. If there are many possible characters, you can choose any of them.

Input
The first line of input contains two integers n and k, where 1 ≤ n ≤ 105 is the number of players
(excluding Tira) and 1 ≤ k ≤ 20 is the number of features.

Then follow n lines describing the existing characters. Each of these n lines contains a string
of k digits which are either 0 or 1. A 1 in position j means the character has the j’th feature,
and a 0 means that it does not have the j’th feature.

Output
Output a single line describing the features of Tira’s character in the same format as in the input.
If there are multiple possible characters with the same smallest maximum similarity, any one of
them will be accepted.

Sample Input 1 Sample Output 1

3 5
01001
11100
10111

00010

Sample Input 2 Sample Output 2

1 4
0000

1111

NCPC 2017 Problem D: Distinctive Character 7

https://pixabay.com/en/egg-carton-eggs-food-singular-1399001/


This page is intentionally left (almost) blank.



Problem E
Emptying the Baltic

Problem ID: emptyingbaltic
Time limit: 3 seconds

Picture by Jeremy Halls on Flickr, cc by-sa

Gunnar dislikes forces of nature and always comes up
with innovative plans to decrease their influence over
him. Even though his previous plan of a giant dome
over Stockholm to protect from too much sunlight (as
well as rain and snow) has not yet been realized, he is
now focusing on preempting the possible effects climate
change might have on the Baltic Sea, by the elegant so-
lution of simply removing the Baltic from the equation.

First, Gunnar wants to build a floodbank connecting
Denmark and Norway to separate the Baltic from the
Atlantic Ocean. The floodbank will also help protect
Nordic countries from rising sea levels in the ocean. Next, Gunnar installs a device that can
drain the Baltic from the seafloor. The device will drain as much water as needed to the Earth’s
core where it will disappear forever (because that is how physics works, at least as far as Gunnar
is concerned). However, depending on the placement of the device, the entire Baltic might not
be completely drained – some pockets of water may remain.

To simplify the problem, Gunnar is approximating the map of the Baltic using a 2-dimensional
grid with 1 meter squares. For each square on the grid, he computes the average altitude. Squares
with negative altitude are covered by water, squares with non-negative altitude are dry. Altitude
is given in meters above the sea level, so the sea level has altitude of exactly 0. He disregards
lakes and dry land below the sea level, as these would not change the estimate much anyway.

Water from a square on the grid can flow to any of its 8 neighbours, even if the two squares
only share a corner. The map is surrounded by dry land, so water never flows outside of the map.
Water respects gravity, so it can only flow closer to the Earth’s core – either via the drainage
device or to a neighbouring square with a lower water level.

Gunnar is more of an idea person than a programmer, so he has asked for your help to
evaluate how much water would be drained for a given placement of the device.

Input
The first line contains two integers h and w, 1 ≤ h,w ≤ 500, denoting the height and width of
the map.

Then follow h lines, each containing w integers. The first line represents the northernmost
row of Gunnar’s map. Each integer represents the altitude of a square on the map grid. The
altitude is given in meters and it is at least −106 and at most 106.

The last line contains two integers i and j, 1 ≤ i ≤ h, 1 ≤ j ≤ w, indicating that the
draining device is placed in the cell corresponding to the j’th column of the i’th row. You may
assume that position (i, j) has negative altitude (i.e., the draining device is not placed on land).

Output
Output one line with one integer – the total volume of sea water drained, in cubic meters.

NCPC 2017 Problem E: Emptying the Baltic 9

https://www.flickr.com/photos/anax/8038782084/


Sample Input 1 Sample Output 1

3 3
-5 2 -5
-1 -2 -1
5 4 -5
2 2

10

Sample Input 2 Sample Output 2

2 3
-2 -3 -4
-3 -2 -3
2 1

16

NCPC 2017 Problem E: Emptying the Baltic 10



Problem F
Fractal Tree

Problem ID: fractaltree
Time limit: 7 seconds

A fractal tree Fi is defined in the following way. First, a rooted tree F0 is given, which contains
at least 2 vertices. Fi is then defined recursively in the following manner. Consider the set of
vertices S which are leaves in Fi−1. For each vertex v in S, we replace it with a copy of F0, such
that v corresponds to the root of F0.

Now, consider the tree Fk, for a given k. In this tree, we perform a depth-first search, where
we visit all vertices of the tree recursively. At a certain vertex, we first recurse into the subtree of
the leftmost child of the vertex, then the second leftmost child, and so on, until we have visited
all the vertices in the subtree of the vertex. Assign integer labels to the vertices in the order they
were visited, starting at 1. See Figure F.1 for an example.

(a) The tree F0. (b) The tree F1.

1

2

3

4

5

6

7

8

9

10

(c) The depth first search la-
belling of F1.

Figure F.1: Illustration of Sample Input 1.

Given a set of queries consisting of pairs of vertices, your task is to find the distance between
the two vertices. The distance is defined as the number of edges on the (unique) simple path
between the two vertices.

Input
First, the tree F0 is given. The first line of input contains the number of vertices 2 ≤ n ≤ 100 000
in F0. The vertices are numbered 0 to n− 1, with 0 being the root vertex. Then follows a line
containing n− 1 integers p1, . . . , pn−1. For each 1 ≤ i ≤ n− 1, the parent of node i in F0 is pi.
It holds that pi < i. Within the tree, the left-to-right ordering of the vertices correspond to their
numbering, in ascending order (i.e. the lowest-numbered child is the leftmost child).

The third line of input contains an integer 0 ≤ k < 230. Then follows a line containing an
integer q, 1 ≤ q ≤ 100 000, the number of queries. Finally, there are q lines containing the
queries. Each query is given by two distinct integers a and b, the labels of two vertices of Fk.
You may assume that a and b are valid labels (i.e., they are between 1 and the number of vertices
of Fk), and that they are at most 230.

Output
For each query (a, b), in the same order as given in the input, output the distance in Fk between
the vertices labelled a and b.

NCPC 2017 Problem F: Fractal Tree 11



Sample Input 1 Sample Output 1

4
0 1 0
1
10
1 2
1 4
1 6
1 8
1 10
5 10
6 8
9 3
7 10
8 9

1
3
3
2
2
6
5
5
1
1

NCPC 2017 Problem F: Fractal Tree 12



Problem G
Galactic Collegiate Programming Contest

Problem ID: gcpc
Time limit: 6 seconds

Picture by GuillaumePreat on Pixabay, cc0

One hundred years from now, in 2117, the In-
ternational Collegiate Programming Contest
(of which the NCPC is a part) has expanded
significantly and it is now the Galactic Colle-
giate Programming Contest (GCPC).

This year there are n teams in the contest.
The teams are numbered 1, 2, . . . , n, and your
favorite team has number 1.

Like today, the score of a team is a pair of
integers (a, b) where a is the number of solved
problems and b is the total penalty of that team.
When a team solves a problem there is some associated penalty (not necessarily calculated in
the same way as in the NCPC – the precise details are not important in this problem). The total
penalty of a team is the sum of the penalties for the solved problems of the team.

Consider two teams t1 and t2 whose scores are (a1, b1) and (a2, b2). The score of team t1 is
better than that of t2 if either a1 > a2, or if a1 = a2 and b1 < b2. The rank of a team is k + 1
where k is the number of teams whose score is better.

You would like to follow the performance of your favorite team. Unfortunately, the organizers
of GCPC do not provide a scoreboard. Instead, they send a message immediately whenever a
team solves a problem.

Input
The first line of input contains two integers n and m, where 1 ≤ n ≤ 105 is the number of teams,
and 1 ≤ m ≤ 105 is the number of events.

Then follow m lines that describe the events. Each line contains two integers t and p
(1 ≤ t ≤ n and 1 ≤ p ≤ 1000), meaning that team t has solved a problem with penalty p. The
events are ordered by the time when they happen.

Output
Output m lines. On the i’th line, output the rank of your favorite team after the first i events
have happened.

Sample Input 1 Sample Output 1

3 4
2 7
3 5
1 6
1 9

2
3
2
1

NCPC 2017 Problem G: Galactic Collegiate Programming Contest 13

https://pixabay.com/en/planets-sun-earth-galaxy-sky-1068198/


This page is intentionally left (almost) blank.



Problem H
Hubtown

Problem ID: hubtown
Time limit: 10 seconds

Hubtown is a large Nordic city which is home to n citizens. Every morning, each of its citizens
wants to travel to the central hub from which the city gets its name, by using one of the m
commuter trains which pass through the city. Each train line is a ray (i.e., a line segment which
extends infinitely long in one direction), ending at the central hub, which is located at coordinates
(0, 0). However, the train lines have limited capacity (which may vary between train lines), so
some train lines may become full, leading to citizens taking their cars instead of commuting.
The city council wishes to minimize the number of people who go by car. In order to do this,
they will issue instructions stating which citizens are allowed to take which train.

A citizen will always take the train line which is of least angular distance from its house.
However, if a citizen is exactly in the middle between two train lines, they are willing to take
either of them, and city council can decide which of the two train lines the citizen should use.
See Figure H.1 for an example.

Citizen

Central hub

Train line

Figure H.1: Illustration of Sample Input 1. The dashed arrows indicate which train lines the
citizens are closest to (note that we are measuring angular distances, not Euclidean distance).

Your task is to help the council, by finding a maximum size subset of citizens who can go by
train in the morning to the central hub, ensuring that each of the citizens take one of the lines
they are closest to, while not exceeding the capacity of any train line. For this subset, you should
also print what train they are to take.

Input
The first line of input contains two integers n and m, where 0 ≤ n ≤ 200 000 is the number of
citizens, and 1 ≤ m ≤ 200 000 is the number of train lines.

The next n lines each contain two integers x and y, the Cartesian coordinates of a citizen’s
home. No citizen lives at the central hub of the city.

Then follow m lines, each containing three integers x, y, and c describing a train line, where
(x, y) are the coordinates of a single point (distinct from the central hub of the city) which the
train line passes through and 0 ≤ c ≤ n is the capacity of the train line. The train line is the ray
starting at (0, 0) and passing through (x, y).

All coordinates x and y (both citizens’ homes and the points defining the train lines) are
bounded by 1000 in absolute value. No two train lines overlap, but multiple citizens may live at
the same coordinates.

NCPC 2017 Problem H: Hubtown 15



Output
First, output a single integer s – the maximum number of citizens who can go by train. Then,
output s lines, one for each citizen that goes by train. On each line, output the index of the citizen
followed by the index of the train line the citizen takes. The indices should be zero-indexed (i.e.,
between 0 and n− 1 for citizens, and between 0 and m− 1 for train lines, respectively), using
the same order as they were given in the input.

Sample Input 1 Sample Output 1

3 2
2 0
-1 0
-2 -1
1 -1 1
1 1 2

3
0 1
1 1
2 0

Sample Input 2 Sample Output 2

6 3
1 1
1 1
1 1
-1 1
-1 1
0 1
-1 0 2
0 1 2
1 0 2

6
0 2
1 2
2 1
5 1
3 0
4 0

NCPC 2017 Problem H: Hubtown 16



Problem I
Import Spaghetti

Problem ID: importspaghetti
Time limit: 4 seconds

cc-by NCPC 2017

You just graduated from programming school and nailed
a Python programming job. The first day at work you
realize that you have inherited a mess. The spaghetti
design pattern was chosen by the previous maintainer,
who recently fled the country. You try to make sense of
the code, but immediately discover that different files
depend cyclically on each other. Testing the code, in
fact running the code, has not yet been attempted.

As you sit down and think, you decide that the first
thing to do is to eliminate the cycles in the dependency graph. So you start by finding a shortest
dependency cycle.

Input
The first line of input contains a number n, 1 ≤ n ≤ 500, the number of files. Then follows one
line with n names of files. Each name is a string with at least 1 and at most 8 lower case letters
‘a’ to ‘z’. Then follow n sections, one section per file name, in the order they were given on the
second line. Each section starts with one line containing the name of the file and an integer k,
followed by k lines, each starting with “import”.

Each “import” line is a comma-space separated line of dependencies. No file imports
the same file more than once, and every file imported is listed in the second line of the input.
Comma-space separated means that every line will start with “import”, then have a list of
class names separated by “, ” (see sample inputs for examples).

Output
If the code base has no cyclic dependencies, output “SHIP IT”. Otherwise, output a line
containing the names of files in a shortest cycle, in the order of the cycle. If there are many
shortest cycles, any one will be accepted.

Sample Input 1 Sample Output 1

4
a b c d
a 1
import d, b, c
b 2
import d
import c
c 1
import c
d 0

c

NCPC 2017 Problem I: Import Spaghetti 17



Sample Input 2 Sample Output 2

5
classa classb myfilec execd libe
classa 2
import classb
import myfilec, libe
classb 1
import execd
myfilec 1
import libe
execd 1
import libe
libe 0

SHIP IT

Sample Input 3 Sample Output 3

5
classa classb myfilec execd libe
classa 2
import classb
import myfilec, libe
classb 1
import execd
myfilec 1
import libe
execd 1
import libe, classa
libe 0

classa classb execd

NCPC 2017 Problem I: Import Spaghetti 18



Problem J
Judging Moose

Problem ID: judgingmoose
Time limit: 1 second

Picture by Ryan Hagerty/US Fish and Wildlife Service, public domain

When determining the age of a bull moose, the
number of tines (sharp points), extending from
the main antlers, can be used. An older bull
moose tends to have more tines than a younger
moose. However, just counting the number of
tines can be misleading, as a moose can break
off the tines, for example when fighting with
other moose. Therefore, a point system is used
when describing the antlers of a bull moose.

The point system works like this: If the
number of tines on the left side and the right
side match, the moose is said to have the even
sum of the number of points. So, “an even 6-point moose”, would have three tines on each side.
If the moose has a different number of tines on the left and right side, the moose is said to have
twice the highest number of tines, but it is odd. So “an odd 10-point moose” would have 5 tines
on one side, and 4 or less tines on the other side.

Can you figure out how many points a moose has, given the number of tines on the left and
right side?

Input
The input contains a single line with two integers ` and r, where 0 ≤ ` ≤ 20 is the number of
tines on the left, and 0 ≤ r ≤ 20 is the number of tines on the right.

Output
Output a single line describing the moose. For even pointed moose, output “Even x” where x
is the points of the moose. For odd pointed moose, output “Odd x” where x is the points of the
moose. If the moose has no tines, output “Not a moose”

Sample Input 1 Sample Output 1

2 3 Odd 6

Sample Input 2 Sample Output 2

3 3 Even 6

Sample Input 3 Sample Output 3

0 0 Not a moose

NCPC 2017 Problem J: Judging Moose 19

https://pixnio.com/fauna-animals/deers/moose-and-elk/moose-animal-pair-bull-and-cow-moose


This page is intentionally left (almost) blank.



Problem K
Kayaking Trip

Problem ID: kayaking
Time limit: 2 seconds

Solution to Sample Input 1, with kayaks replaced by canoes (cc by-sa NCPC 2017)

You are leading a kayaking trip with a mixed group
of participants in the Stockholm archipelago, but as
you are about to begin your final stretch back to the
mainland you notice a storm on the horizon. You
had better paddle as fast as you can to make sure
you do not get trapped on one of the islands. Of
course, you cannot leave anyone behind, so your
speed will be determined by the slowest kayak.
Time to start thinking; How should you distribute
the participants among the kayaks to maximize
your chance of reaching the mainland safely?

The kayaks are of different types and have dif-
ferent amounts of packing, so some are more easily
paddled than others. This is captured by a speed factor c that you have already figured out for
each kayak. The final speed v of a kayak, however, is also determined by the strengths s1 and s2
of the two people in the kayak, by the relation v = c(s1 + s2). In your group you have some
beginners with a kayaking strength of sb, a number of normal participants with strength sn and
some quite experienced strong kayakers with strength se.

Input
The first line of input contains three non-negative integers b, n, and e, denoting the number of
beginners, normal participants, and experienced kayakers, respectively. The total number of
participants, b+ n+ e, will be even, at least 2, and no more than 100 000. This is followed by
a line with three integers sb, sn, and se, giving the strengths of the corresponding participants
(1 ≤ sb < sn < se ≤ 1 000). The third and final line contains m = b+n+e

2
integers c1, . . . , cm

(1 ≤ ci ≤ 100 000 for each i), each giving the speed factor of one kayak.

Output
Output a single integer, the maximum speed that the slowest kayak can get by distributing the
participants two in each kayak.

Sample Input 1 Sample Output 1

3 1 0
40 60 90
18 20

1600

Sample Input 2 Sample Output 2

7 0 7
5 10 500
1 1 1 1 1 1 1

505

NCPC 2017 Problem K: Kayaking Trip 21



This page is intentionally left (almost) blank.


