#include using namespace std; const long long oo = 0x3f3f3f3f3f3f3f3fLL; typedef long long ll; typedef unsigned long long ull; typedef pair pii; typedef vector vi; typedef vector vs; #define sz(c) int((c).size()) #define all(c) (c).begin(), (c).end() #define FOR(i,a,b) for (int i = (a); i < (b); i++) #define FORS(i,a,b,s) for (int i = (a); i < (b); i=i+(s)) #define FORD(i,a,b) for (int i = int(b)-1; i >= (a); i--) #define FORIT(i,c) for (__typeof__((c).begin()) i = (c).begin(); i != (c).end(); i++) #define MAXN 1000000 int n,m; vi adj[MAXN]; vi bdj[MAXN]; vector eok[MAXN]; vi wadj[MAXN]; vi wbdj[MAXN]; ll dst[MAXN]; void reachable(ll t){ priority_queue > q; q.push(make_pair(0,n-1)); dst[n-1] = 0; FOR(i,0,n-1) dst[i] = oo; while (sz(q)){ pair i = q.top(); q.pop(); if (dst[i.second] != -i.first) continue; FOR(j,0,sz(bdj[i.second])){ ll ndst = i.first - wbdj[i.second][j]; if (-ndst > t) continue; if (-ndst > dst[bdj[i.second][j]]) continue; dst[bdj[i.second][j]] = -ndst; q.push(make_pair(ndst,bdj[i.second][j])); } } } ll fdst[MAXN]; void forward(ll A){ priority_queue > q; q.push(make_pair(0,0)); fdst[0] = 0; FOR(i,1,n) fdst[i] = oo; while (sz(q)){ pair i = q.top(); q.pop(); if (fdst[i.second] != -i.first) continue; FOR(j,0,sz(adj[i.second])){ ll ndst = i.first - wadj[i.second][j]; if (-ndst > A) continue; if (-ndst > fdst[adj[i.second][j]]) continue; fdst[adj[i.second][j]] = -ndst; q.push(make_pair(ndst,adj[i.second][j])); } } } int visi[MAXN]; int backord[MAXN]; ll lpath[MAXN]; int topC; bool dfs(int i){ if (visi[i] == 1) return true; // found cycle if (visi[i] == 2) return false; visi[i] = 1; FOR(j,0,sz(adj[i])) if (eok[i][j]) if (dfs(adj[i][j])) return true; visi[i] = 2; backord[topC++] = i; // add to inverse topological order; return false; } int main(){ ll A,B; cin >> A >> B; cin >> n >> m; FOR(i,0,m){ int u,v,t; cin >> u >> v >> t; u--,v--; adj[u].push_back(v); eok[u].push_back(false); wadj[u].push_back(t); bdj[v].push_back(u); wbdj[v].push_back(t); } forward(A); // check where we can R go to up to time A ll lo = -1; ll hi = 1000000000000LL; while (abs(hi-lo) > 1){ ll mi = (hi+lo) / 2; bool fail = false; reachable(mi); // starting from A, we have to be in the reachable set // determine which edges in reachable are ok FOR(i,0,n) FOR(j,0,sz(adj[i])) eok[i][j] = dst[adj[i][j]] != oo && wadj[i][j] + dst[adj[i][j]] <= mi; // where can R be at time A set start; FOR(i,0,n) if (dst[i] != oo && fdst[i] != oo) start.insert(i); map edges; FOR(i,0,n) if (fdst[i] != oo) FOR(e,0,sz(adj[i])) if (dst[adj[i][e]] != oo){ if (wadj[i][e] - (mi - dst[adj[i][e]]) + fdst[i] <= A) edges[adj[i][e]] = mi - dst[adj[i][e]], start.insert(adj[i][e]); } if (!sz(start) && !sz(edges)) fail = true; // can R stay in dst != oo until B or for eternity FOR(i,0,n) lpath[i] = 0, visi[i] = 0; topC = 0; bool cycleFound = false; FORIT(i,start) { lpath[*i] = max(lpath[*i], edges[*i]); if (visi[*i]) continue; cycleFound |= dfs(*i); } if (!cycleFound && dst[0] != oo) cycleFound = dst[0] <= mi; // if we can wait at 0, wait for the call and then drive // if we have not found a cycle, compute longest path if (!cycleFound){ FORD(t,0,topC){ int i = backord[t]; FOR(j,0,sz(adj[i])) if (eok[i][j]) lpath[adj[i][j]] = max(lpath[adj[i][j]], lpath[i] + wadj[i][j]); } if (lpath[n-1] >= B-A) cycleFound = true; } if (!fail && cycleFound) hi = mi; else lo = mi; } cout << hi << endl; }