NWERC 2023

Solutions presentation

The NWERC 2023 jury November 26, 2023

The NWERC 2023 Jury

- Doan-Dai Nguyen
 École normale supérieure -Université Paris Sciences & Lettres
- Jeroen Bransen
 Chordify
- Maarten Sijm
 CHipCie (Delft University of Technology)
- Michael Zündorf

Karlsruhe Institute of Technology

- Nils Gustafsson
 KTH Royal Institute of Technology
- Paul Wild
 FAU Erlangen-Nürnberg
- Ragnar Groot Koerkamp ETH Zurich
- Reinier Schmiermann
 Utrecht University
- Wendy Yi

Karlsruhe Institute of Technology

Big thanks to our proofreaders and test solvers

- Dany Sluijk
 Delft University of Technology
- Mees de Vries BAPC Jury
- Oleksandr Kulkov
 ETH Zurich
- Pavel Kunyavskiy JetBrains, Amsterdam
- Robin Lee
 Google
- Vitaly Aksenov
 City, University of London

Problem Author: Michael Zündorf

Problem

Given $1 \le n \le 2 \cdot 10^5$ chargers, each $3 \le w \le 10^9$ cm wide, how many fit into a powerstrip comprising a row of $1 \le s \le 10^5$ sockets, each of width 3 cm?

Problem Author: Michael Zündorf

Problem

Given $1 \le n \le 2 \cdot 10^5$ chargers, each $3 \le w \le 10^9$ cm wide, how many fit into a powerstrip comprising a row of $1 \le s \le 10^5$ sockets, each of width 3 cm?

Solution

• First, greedily put the two largest chargers on the outside.

Problem Author: Michael Zündorf

Problem

Given $1 \le n \le 2 \cdot 10^5$ chargers, each $3 \le w \le 10^9$ cm wide, how many fit into a powerstrip comprising a row of $1 \le s \le 10^5$ sockets, each of width 3 cm?

- First, greedily put the two largest chargers on the outside.
- If the answer is k, we can use the k smallest chargers.

Problem Author: Michael Zündorf

Problem

Given $1 \le n \le 2 \cdot 10^5$ chargers, each $3 \le w \le 10^9$ cm wide, how many fit into a powerstrip comprising a row of $1 \le s \le 10^5$ sockets, each of width 3 cm?

- First, greedily put the two largest chargers on the outside.
- If the answer is k, we can use the k smallest chargers.
- To test if the smallest k chargers fit:
 - Start with those of length 0 mod 3.
 - Then pair up 1 mod 3 and 2 mod 3 chargers, filling the gaps.
 - Then pair up remaining 1 mod 3, leaving a gap of 1 in between.
 - Lastly put the remaining chargers, and check the total length used.

Problem Author: Michael Zündorf

Problem

Given $1 \le n \le 2 \cdot 10^5$ chargers, each $3 \le w \le 10^9$ cm wide, how many fit into a powerstrip comprising a row of $1 \le s \le 10^5$ sockets, each of width 3 cm?

- First, greedily put the two largest chargers on the outside.
- If the answer is k, we can use the k smallest chargers.
- To test if the smallest k chargers fit:
 - Start with those of length 0 mod 3.
 - Then pair up 1 mod 3 and 2 mod 3 chargers, filling the gaps.
 - Then pair up remaining 1 mod 3, leaving a gap of 1 in between.
 - Lastly put the remaining chargers, and check the total length used.
- Binary search over k. Runtime $\mathcal{O}(n \log n)$.

Problem Author: Michael Zündorf

Problem

Given $1 \le n \le 2 \cdot 10^5$ chargers, each $3 \le w \le 10^9$ cm wide, how many fit into a powerstrip comprising a row of $1 \le s \le 10^5$ sockets, each of width 3 cm?

- First, greedily put the two largest chargers on the outside.
- If the answer is k, we can use the k smallest chargers.
- To test if the smallest k chargers fit:
 - Start with those of length 0 mod 3.
 - Then pair up 1 mod 3 and 2 mod 3 chargers, filling the gaps.
 - Then pair up remaining 1 mod 3, leaving a gap of 1 in between.
 - Lastly put the remaining chargers, and check the total length used.
- Binary search over k. Runtime $\mathcal{O}(n \log n)$.
- Edge case: when there is only a single socket.

Problem Author: Michael Zündorf

Problem

Given $1 \le n \le 2 \cdot 10^5$ chargers, each $3 \le w \le 10^9$ cm wide, how many fit into a powerstrip comprising a row of $1 \le s \le 10^5$ sockets, each of width 3 cm?

- First, greedily put the two largest chargers on the outside.
- If the answer is k, we can use the k smallest chargers.
- To test if the smallest k chargers fit:
 - Start with those of length 0 mod 3.
 - Then pair up 1 mod 3 and 2 mod 3 chargers, filling the gaps.
 - Then pair up remaining 1 mod 3, leaving a gap of 1 in between.
 - Lastly put the remaining chargers, and check the total length used.
- Binary search over k. Runtime $\mathcal{O}(n \log n)$.
- Edge case: when there is only a single socket.
- Linear time is also possible, trying to add one charger at a time.

Problem Author: Michael Zündorf

Problem

Given $1 \le n \le 2 \cdot 10^5$ chargers, each $3 \le w \le 10^9$ cm wide, how many fit into a powerstrip comprising a row of $1 \le s \le 10^5$ sockets, each of width 3 cm?

- First, greedily put the two largest chargers on the outside.
- If the answer is k, we can use the k smallest chargers.
- To test if the smallest k chargers fit:
 - Start with those of length 0 mod 3.
 - Then pair up 1 mod 3 and 2 mod 3 chargers, filling the gaps.
 - Then pair up remaining 1 mod 3, leaving a gap of 1 in between.
 - Lastly put the remaining chargers, and check the total length used.
- Binary search over k. Runtime $\mathcal{O}(n \log n)$.
- Edge case: when there is only a single socket.
- Linear time is also possible, trying to add one charger at a time.

Problem Author: Michael Zündorf

Problem

Given $1 \le n \le 2 \cdot 10^5$ chargers, each $3 \le w \le 10^9$ cm wide, how many fit into a powerstrip comprising a row of $1 \le s \le 10^5$ sockets, each of width 3 cm?

Solution

- First, greedily put the two largest chargers on the outside.
- If the answer is k, we can use the k smallest chargers.
- To test if the smallest k chargers fit:
 - Start with those of length 0 mod 3.
 - Then pair up 1 mod 3 and 2 mod 3 chargers, filling the gaps.
 - Then pair up remaining 1 mod 3, leaving a gap of 1 in between.
 - Lastly put the remaining chargers, and check the total length used.
- Binary search over k. Runtime $\mathcal{O}(n \log n)$.
- Edge case: when there is only a single socket.
- Linear time is also possible, trying to add one charger at a time.

Statistics: ... submissions, ... accepted, ... unknown

Problem

Given *n* types of bricks b_1, \ldots, b_n , can you build a wall of width *w* where no two gaps appear above each other?

Subtask

Can at least one row be built?

Subtask

Can at least one row be built?

Solution

This is known as the coin change problem and can be solved like this:

- $\mathcal{O}(\frac{w^2}{64})$ with dp + bitsets
- $\mathcal{O}(w \log(w)^2)$ with fft (faster is possible)

Subtask

Can at least one row be built?

Solution

This is known as the coin change problem and can be solved like this:

- $\mathcal{O}(\frac{w^2}{64})$ with dp + bitsets
- $\mathcal{O}(w \log(w)^2)$ with fft (faster is possible)
- Bitsets are much faster

Case 1 • w ∈ {b₁,..., b_n}

Case 1

• $w \in \{b_1,\ldots,b_n\}$

Case 2

• There is a row that uses two bricks b_x, b_y

Case 1

• $w \in \{b_1,\ldots,b_n\}$

Case 2

- There is a row that uses two bricks b_x, b_y
- WLOG:
 - Let b_x be the shortest
 - Let b_y be the second shortest
 - there are as few b_x as possible (still at least one)

Case 1

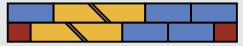
• $w \in \{b_1,\ldots,b_n\}$

Case 2

- There is a row that uses two bricks b_x, b_y
- WLOG:
 - Let b_x be the shortest
 - Let b_y be the second shortest
 - there are as few b_x as possible (still at least one)

Case 2.1

• Sum of b_x can be replace by some b_y



Case 1

• $w \in \{b_1,\ldots,b_n\}$

Case 2

- There is a row that uses two bricks b_x, b_y
- WLOG:
 - Let b_x be the shortest
 - Let b_y be the second shortest
 - there are as few b_x as possible (still at least one)

Case 2.1

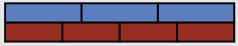
• Sum of b_x can be replace by some b_y

Case 3

• There are two bricks b_x , b_y that divide w

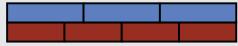
Case 3

- There are two bricks b_x, b_y that divide w
- Case 2 implies that $lcm(b_x, b_y) = w$



Case 3

- There are two bricks b_x, b_y that divide w
- Case 2 implies that $lcm(b_x, b_y) = w$



Conclusion

The solution exists in two cases:

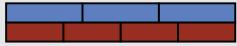
- Trivial: $w \in \{b_1, \ldots, b_n\}$
- There exist two bricks that both can be part of a solution

Case 4

Impossible

Case 3

- There are two bricks b_x, b_y that divide w
- Case 2 implies that $lcm(b_x, b_y) = w$



Conclusion

The solution exists in two cases:

- Trivial: $w \in \{b_1, \ldots, b_n\}$
- There exist two bricks that both can be part of a solution

Statistics: ... submissions, ... accepted, ... unknown

Case 4

Impossible

Problem

Given are $n \le 10^5$ players playing a deterministic version of *musical chairs*. Player *i* starts on chair *i*. Apply up to 10^5 commands:

- Rotate by +r: the person on chair *i* moves clockwise to chair i + r.
- Multiply by *m, the person on chair *i* moves to $i \cdot m$, where the person walking the least gets it.
- On ?q, print who sits on chair q.

Problem

Given are $n \le 10^5$ players playing a deterministic version of *musical chairs*. Player *i* starts on chair *i*. Apply up to 10^5 commands:

- Rotate by +r: the person on chair *i* moves clockwise to chair i + r.
- Multiply by *m, the person on chair *i* moves to $i \cdot m$, where the person walking the least gets it.
- On ?q, print who sits on chair q.

Naive solution

Store who sits on each chair, and apply each command. $O(n^2)$

Be *lazy*! Initialize p[i] = i, the person on chair *i*.

• Instead of rotating by +r, increment the total rotation R. p[i] is now at i + R, so query p[q - R].

- Instead of rotating by +r, increment the total rotation R. p[i] is now at i + R, so query p[q R].
- For collision-free multiplications: store total multiplication M, so p[i] is now at M · i + R. When multiplying by m, update M ← m · M and R ← m · R. Query p[(q − R) · M⁻¹].

- Instead of rotating by +r, increment the total rotation R. p[i] is now at i + R, so query p[q R].
- For collision-free multiplications: store total multiplication M, so p[i] is now at M · i + R. When multiplying by m, update M ← m · M and R ← m · R. Query p[(q − R) · M⁻¹].
- Collisions occur when gcd(m, k) > 1 (k = #leftover people).
 Simulate these fully, set k ← k/gcd(m, k), and reset R and M.

- Instead of rotating by +r, increment the total rotation R. p[i] is now at i + R, so query p[q R].
- For collision-free multiplications: store total multiplication M, so p[i] is now at M · i + R. When multiplying by m, update M ← m · M and R ← m · R. Query p[(q − R) · M⁻¹].
- Collisions occur when gcd(m, k) > 1 (k = #leftover people).
 Simulate these fully, set k ← k/gcd(m, k), and reset R and M.
- Be careful about queries to empty chairs.

- Instead of rotating by +r, increment the total rotation R. p[i] is now at i + R, so query p[q R].
- For collision-free multiplications: store total multiplication M, so p[i] is now at M · i + R. When multiplying by m, update M ← m · M and R ← m · R. Query p[(q − R) · M⁻¹].
- Collisions occur when gcd(m, k) > 1 (k = #leftover people).
 Simulate these fully, set k ← k/gcd(m, k), and reset R and M.
- Be careful about queries to empty chairs.
- Each collision at least halves k, so at most lg n collisions.

- Instead of rotating by +r, increment the total rotation R. p[i] is now at i + R, so query p[q R].
- For collision-free multiplications: store total multiplication M, so p[i] is now at M · i + R. When multiplying by m, update M ← m · M and R ← m · R. Query p[(q − R) · M⁻¹].
- Collisions occur when gcd(m, k) > 1 (k = #leftover people).
 Simulate these fully, set k ← k/gcd(m, k), and reset R and M.
- Be careful about queries to empty chairs.
- Each collision at least halves k, so at most lg n collisions.
- Runtime: $\mathcal{O}(n \log n)$.

Be *lazy*! Initialize p[i] = i, the person on chair *i*.

- Instead of rotating by +r, increment the total rotation R. p[i] is now at i + R, so query p[q R].
- For collision-free multiplications: store total multiplication M, so p[i] is now at M · i + R. When multiplying by m, update M ← m · M and R ← m · R. Query p[(q − R) · M⁻¹].
- Collisions occur when gcd(m, k) > 1 (k = #leftover people).
 Simulate these fully, set k ← k/gcd(m, k), and reset R and M.
- Be careful about queries to empty chairs.
- Each collision at least halves k, so at most lg n collisions.
- Runtime: $\mathcal{O}(n \log n)$.

Statistics: ... submissions, ... accepted, ... unknown

Problem

Given your availability for every hour in a week, pick at least $1 \le d \le 7$ days in the first poll and at least $1 \le h \le 24$ hours in the second poll to get the highest probability that you will be available. Fun fact: based on a true story, while the jury was planning their first meeting!

Problem

Given your availability for every hour in a week, pick at least $1 \le d \le 7$ days in the first poll and at least $1 \le h \le 24$ hours in the second poll to get the highest probability that you will be available. Fun fact: based on a true story, while the jury was planning their first meeting!

Observation

Selecting more than $d \frac{days}{h}$ hours is never more efficient than selecting exactly $d \frac{days}{h}$ hours.

Given your availability for every hour in a week, pick at least $1 \le d \le 7$ days in the first poll and at least $1 \le h \le 24$ hours in the second poll to get the highest probability that you will be available. Fun fact: based on a true story, while the jury was planning their first meeting!

Observation

Selecting more than $d \frac{days}{h}$ hours is never more efficient than selecting exactly $d \frac{days}{h}$ hours.

Brute-force solution

For every combination of (a subset of d days) and (a subset of h hours), calculate the number of free timeslots, take the maximum, and divide by $d \cdot h$.

Given your availability for every hour in a week, pick at least $1 \le d \le 7$ days in the first poll and at least $1 \le h \le 24$ hours in the second poll to get the highest probability that you will be available. Fun fact: based on a true story, while the jury was planning their first meeting!

Observation

Selecting more than $d \operatorname{days}/h$ hours is never more efficient than selecting exactly $d \operatorname{days}/h$ hours.

Brute-force solution

For every combination of (a subset of *d* days) and (a subset of *h* hours), calculate the number of free timeslots, take the maximum, and divide by $d \cdot h$. **Too slow:** in the worst case where d = 3 and h = 12, this requires checking $\binom{7}{3} \cdot \binom{24}{12} \cdot 3 \cdot 12 \approx 3 \cdot 10^9$ timeslots.

Given your availability for every hour in a week, pick at least $1 \le d \le 7$ days in the first poll and at least $1 \le h \le 24$ hours in the second poll to get the highest probability that you will be available. Fun fact: based on a true story, while the jury was planning their first meeting!

Observation

Selecting more than $d \operatorname{days}/h$ hours is never more efficient than selecting exactly $d \operatorname{days}/h$ hours.

Brute-force solution

For every combination of (a subset of *d* days) and (a subset of *h* hours), calculate the number of free timeslots, take the maximum, and divide by $d \cdot h$. **Too slow:** in the worst case where d = 3 and h = 12, this requires checking $\binom{7}{3} \cdot \binom{24}{12} \cdot 3 \cdot 12 \approx 3 \cdot 10^9$ timeslots. (Unless you write *very* efficient C++)

Given your availability for every hour in a week, pick at least $1 \le d \le 7$ days in the first poll and at least $1 \le h \le 24$ hours in the second poll to get the highest probability that you will be available. Fun fact: based on a true story, while the jury was planning their first meeting!

Greedy Solution

To avoid having to check all combinations, only check all combinations of d days.

Given your availability for every hour in a week, pick at least $1 \le d \le 7$ days in the first poll and at least $1 \le h \le 24$ hours in the second poll to get the highest probability that you will be available. Fun fact: based on a true story, while the jury was planning their first meeting!

Greedy Solution

To avoid having to check all combinations, only check all combinations of d days.

For every combination of d days:

- For every hour, count the number of cells with '.'.
- Sort this list and select the *h* hours with the most open timeslots.
- Calculate the number of free timeslots, take the maximum, and divide by $d \cdot h$.

Given your availability for every hour in a week, pick at least $1 \le d \le 7$ days in the first poll and at least $1 \le h \le 24$ hours in the second poll to get the highest probability that you will be available. Fun fact: based on a true story, while the jury was planning their first meeting!

Greedy Solution

To avoid having to check all combinations, only check all combinations of d days.

For every combination of d days:

- For every hour, count the number of cells with '.'.
- Sort this list and select the *h* hours with the most open timeslots.
- Calculate the number of free timeslots, take the maximum, and divide by $d \cdot h$.

Statistics: ... submissions, ... accepted, ... unknown

Problem

There are *n* variables $x_1, x_2, ..., x_n$, initially set to 2023. You are given *m* queries that either assigns x_i to $x_i^{x_j}$, or asks you to compare x_i and x_j .

Observation

• To make the numbers slightly less huge, take the logarithm twice. Let $y_i = \log \log(x_i)$.

Problem

There are *n* variables $x_1, x_2, ..., x_n$, initially set to 2023. You are given *m* queries that either assigns x_i to $x_i^{x_j}$, or asks you to compare x_i and x_j .

Observation

- To make the numbers slightly less huge, take the logarithm twice. Let $y_i = \log \log(x_i)$.
- $x_i = x_i^{x_j} \equiv y_i = y_i + 2023^{y_j}$.

Problem

There are *n* variables $x_1, x_2, ..., x_n$, initially set to 2023. You are given *m* queries that either assigns x_i to $x_i^{x_j}$, or asks you to compare x_i and x_j .

Observation

- To make the numbers slightly less huge, take the logarithm twice. Let $y_i = \log \log(x_i)$.
- $x_i = x_i^{x_j} \equiv y_i = y_i + 2023^{y_j}$.
- Consider these numbers in base 2023. Each operation, one of the digits will increase by one. But no carry will ever happen since there are fewer than 2023 operations.

Solution

• Represent every variable as a list containing the positions of its non-zero digits. Two such numbers can be compared by lexicographically comparing their lists.

- Represent every variable as a list containing the positions of its non-zero digits. Two such numbers can be compared by lexicographically comparing their lists.
- When a variable gets updated, it is much easier to create a new variable $y' = y_i + 2023^{y_j}$.

- Represent every variable as a list containing the positions of its non-zero digits. Two such numbers can be compared by lexicographically comparing their lists.
- When a variable gets updated, it is much easier to create a new variable $y' = y_i + 2023^{y_j}$.
- Order the variables by size at all times. When a new variable y' is created, copy the list of y_i and add y_j to it. Sort the list of y' and insert it into the order.

- Represent every variable as a list containing the positions of its non-zero digits. Two such numbers can be compared by lexicographically comparing their lists.
- When a variable gets updated, it is much easier to create a new variable $y' = y_i + 2023^{y_j}$.
- Order the variables by size at all times. When a new variable y' is created, copy the list of y_i and add y_j to it. Sort the list of y' and insert it into the order.
- The ordering can be a trie, or just an array. This can be done in $\mathcal{O}(n^2)$ or $\mathcal{O}(n^2 \log(n))$.

- Represent every variable as a list containing the positions of its non-zero digits. Two such numbers can be compared by lexicographically comparing their lists.
- When a variable gets updated, it is much easier to create a new variable $y' = y_i + 2023^{y_j}$.
- Order the variables by size at all times. When a new variable y' is created, copy the list of y_i and add y_j to it. Sort the list of y' and insert it into the order.
- The ordering can be a trie, or just an array. This can be done in $\mathcal{O}(n^2)$ or $\mathcal{O}(n^2 \log(n))$.
- Challenge: can you solve the problem faster than quadratic time?

- Represent every variable as a list containing the positions of its non-zero digits. Two such numbers can be compared by lexicographically comparing their lists.
- When a variable gets updated, it is much easier to create a new variable $y' = y_i + 2023^{y_j}$.
- Order the variables by size at all times. When a new variable y' is created, copy the list of y_i and add y_j to it. Sort the list of y' and insert it into the order.
- The ordering can be a trie, or just an array. This can be done in $\mathcal{O}(n^2)$ or $\mathcal{O}(n^2 \log(n))$.
- Challenge: can you solve the problem faster than quadratic time?

Statistics: ... submissions, ... accepted, ... unknown

Problem Author: Michael Zündorf

Problem

Given a fraction $\frac{a}{b}$, try to make it equal to $\frac{c}{d}$ by cancelling some digits in a and b

Given a fraction $\frac{a}{b}$, try to make it equal to $\frac{c}{d}$ by cancelling some digits in a and b

- Try all possible $\mathcal{O}(2^{|a|})$ subsets of a
- Given a', c and d, we know $b' = \frac{a' \cdot d}{c}$ must hold
- Check if b can be made into b' by removing the same digits

Given a fraction $\frac{a}{b}$, try to make it equal to $\frac{c}{d}$ by cancelling some digits in a and b

Solution

- Try all possible $\mathcal{O}(2^{|a|})$ subsets of a
- Given a', c and d, we know $b' = \frac{a' \cdot d}{c}$ must hold
- Check if b can be made into b' by removing the same digits

Pitfalls

- $a' \cdot d$ not divisible by c
- Leading zeroes
- 64-bit integer overflow: take GCD first, do operations modulo some prime, use bigger integers

Given a fraction $\frac{a}{b}$, try to make it equal to $\frac{c}{d}$ by cancelling some digits in a and b

Solution

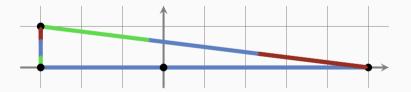
- Try all possible $\mathcal{O}(2^{|a|})$ subsets of a
- Given a', c and d, we know $b' = \frac{a' \cdot d}{c}$ must hold
- Check if b can be made into b' by removing the same digits

Pitfalls

- $a' \cdot d$ not divisible by c
- Leading zeroes
- 64-bit integer overflow: take GCD first, do operations modulo some prime, use bigger integers

Statistics: ... submissions, ... accepted, ... unknown

You are given a graph consisting of line segments in 3D space. You travel on a ship with constant acceleration and constant fuel consumption for the time spent accelerating. You need to come to a standstill at each vertex. Given a target location and a time limit, find the minimum amount of fuel needed to get there. You need to answer multiple queries, all from the same starting location.



• Consider a path consisting of multiple line segments.

- Consider a path consisting of multiple line segments.
- Suppose the *i*-th segment is d_i metres long and we accelerate/decelerate for x_i seconds along it.
- Then it takes $x_i + \frac{d_i}{x_i}$ seconds to traverse the *i*-th segment.
- New problem: minimize $\sum 2x_i$ subject to $\sum x_i + \frac{d_i}{x_i} \le t$.
- Key insight: optimum is reached when $x_i = c \cdot \sqrt{d_i}$ for some constant c.
- We can compute c by solving $c + \frac{1}{c} = t / \sum \sqrt{d_i}$. When the RHS is < 2, no solution exists.

Solution

• To keep the time limit and save fuel, find a path that minimizes $\sum \sqrt{d_i}$.

- Consider a path consisting of multiple line segments.
- Suppose the *i*-th segment is d_i metres long and we accelerate/decelerate for x_i seconds along it.
- Then it takes $x_i + \frac{d_i}{x_i}$ seconds to traverse the *i*-th segment.
- New problem: minimize $\sum 2x_i$ subject to $\sum x_i + \frac{d_i}{x_i} \le t$.
- Key insight: optimum is reached when $x_i = c \cdot \sqrt{d_i}$ for some constant c.
- We can compute c by solving $c + \frac{1}{c} = t / \sum \sqrt{d_i}$. When the RHS is < 2, no solution exists.

- To keep the time limit and save fuel, find a path that minimizes $\sum \sqrt{d_i}$.
- Use Dijkstra's algorithm for this, where edges have length $\sqrt{d_i}$.

- Consider a path consisting of multiple line segments.
- Suppose the *i*-th segment is d_i metres long and we accelerate/decelerate for x_i seconds along it.
- Then it takes $x_i + \frac{d_i}{x_i}$ seconds to traverse the *i*-th segment.
- New problem: minimize $\sum 2x_i$ subject to $\sum x_i + \frac{d_i}{x_i} \le t$.
- Key insight: optimum is reached when $x_i = c \cdot \sqrt{d_i}$ for some constant c.
- We can compute c by solving $c + \frac{1}{c} = t / \sum \sqrt{d_i}$. When the RHS is < 2, no solution exists.

- To keep the time limit and save fuel, find a path that minimizes $\sum \sqrt{d_i}$.
- Use Dijkstra's algorithm for this, where edges have length $\sqrt{d_i}$.
- The starting location is fixed, so queries can be answered in constant time.

- Consider a path consisting of multiple line segments.
- Suppose the *i*-th segment is *d_i* metres long and we accelerate/decelerate for *x_i* seconds along it.
- Then it takes $x_i + \frac{d_i}{x_i}$ seconds to traverse the *i*-th segment.
- New problem: minimize $\sum 2x_i$ subject to $\sum x_i + \frac{d_i}{x_i} \le t$.
- Key insight: optimum is reached when $x_i = c \cdot \sqrt{d_i}$ for some constant c.
- We can compute c by solving $c + \frac{1}{c} = t / \sum \sqrt{d_i}$. When the RHS is < 2, no solution exists.

Solution

- To keep the time limit and save fuel, find a path that minimizes $\sum \sqrt{d_i}$.
- Use Dijkstra's algorithm for this, where edges have length $\sqrt{d_i}$.
- The starting location is fixed, so queries can be answered in constant time.

Statistics: ... submissions, ... accepted, ... unknown

Problem

Print a valid arithmetic expression using $+,\,\cdot,$ (, and) and all given numbers exactly once such that the value is maximal.

Problem

Print a valid arithmetic expression using $+,\,\cdot,$ (, and) and all given numbers exactly once such that the value is maximal.

Solution

• Idea: A maximal expression always is the product of sums.

Problem

Print a valid arithmetic expression using $+,\,\cdot,$ (, and) and all given numbers exactly once such that the value is maximal.

- Idea: A maximal expression always is the product of sums.
- All numbers are > 1: Multiply all numbers.

Problem

Print a valid arithmetic expression using $+,\,\cdot,$ (, and) and all given numbers exactly once such that the value is maximal.

- Idea: A maximal expression always is the product of sums.
- All numbers are > 1: Multiply all numbers.
- With 1s and 2s, some numbers need to be combined into sums.

Problem

Print a valid arithmetic expression using $+,\,\cdot,$ (, and) and all given numbers exactly once such that the value is maximal.

Solution

- Idea: A maximal expression always is the product of sums.
- All numbers are > 1: Multiply all numbers.
- With 1s and 2s, some numbers need to be combined into sums.

Problem

Print a valid arithmetic expression using $+,\,\cdot,$ (, and) and all given numbers exactly once such that the value is maximal.

Solution

- Idea: A maximal expression always is the product of sums.
- All numbers are > 1: Multiply all numbers.
- With 1s and 2s, some numbers need to be combined into sums.

Cases:

• Only one 1: Add to second smallest number.

Problem

Print a valid arithmetic expression using $+,\,\cdot,$ (, and) and all given numbers exactly once such that the value is maximal.

Solution

- Idea: A maximal expression always is the product of sums.
- All numbers are > 1: Multiply all numbers.
- With 1s and 2s, some numbers need to be combined into sums.

- Only one 1: Add to second smallest number.
- No 2s: Repeatedly combine three 1s.

Problem

Print a valid arithmetic expression using $+,\,\cdot,$ (, and) and all given numbers exactly once such that the value is maximal.

Solution

- Idea: A maximal expression always is the product of sums.
- All numbers are > 1: Multiply all numbers.
- With 1s and 2s, some numbers need to be combined into sums.

- Only one 1: Add to second smallest number.
- No 2s: Repeatedly combine three 1s.
 - Special case: If two 1s or four 1s, combine two 1s.

Problem

Print a valid arithmetic expression using $+,\,\cdot,$ (, and) and all given numbers exactly once such that the value is maximal.

Solution

- Idea: A maximal expression always is the product of sums.
- All numbers are > 1: Multiply all numbers.
- With 1s and 2s, some numbers need to be combined into sums.

- Only one 1: Add to second smallest number.
- No 2s: Repeatedly combine three 1s.
 - Special case: If two 1s or four 1s, combine two 1s.
- At least one 1 and one 2: Repeatedly combine one 1 and one 2.

Problem

Print a valid arithmetic expression using $+,\,\cdot,$ (, and) and all given numbers exactly once such that the value is maximal.

Solution

- Idea: A maximal expression always is the product of sums.
- All numbers are > 1: Multiply all numbers.
- With 1s and 2s, some numbers need to be combined into sums.

- Only one 1: Add to second smallest number.
- No 2s: Repeatedly combine three 1s.
 - Special case: If two 1s or four 1s, combine two 1s.
- At least one 1 and one 2: Repeatedly combine one 1 and one 2.
 - Special case: If two 1s and one 2, combine those.

Problem

Print a valid arithmetic expression using +, \cdot , (, and) and all given numbers exactly once such that the value is maximal.

Solution

- Idea: A maximal expression always is the product of sums.
- All numbers are > 1: Multiply all numbers.
- With 1s and 2s, some numbers need to be combined into sums.

Cases:

- Only one 1: Add to second smallest number.
- No 2s: Repeatedly combine three 1s.
 - Special case: If two 1s or four 1s, combine two 1s.
- At least one 1 and one 2: Repeatedly combine one 1 and one 2.
 - Special case: If two 1s and one 2, combine those.

Statistics: ... submissions, ... accepted, ... unknown

Problem

Given $n \leq 1000$ line segments that partition the plane in small regions. Are there two regions the same *distance* from the ocean?

Problem

Given $n \le 1000$ line segments that partition the plane in small regions. Are there two regions the same *distance* from the ocean?

Geometry solution

Find all intersections and construct the dual graph on faces: Costs $O(n^2 \log n)$ and your sanity (256 lines of C++).

Problem

Given $n \leq 1000$ line segments that partition the plane in small regions. Are there two regions the same *distance* from the ocean?

Geometry solution

Find all intersections and construct the dual graph on faces: Costs $O(n^2 \log n)$ and your sanity (256 lines of C++).

Intended solution

- The difference between adjacent distances is at most 1.
- We can work modulo 2 instead.
- The answer is no iff all pairs of adjacent faces have opposite values.
- I.e.: the dual graph must be bipartite.
- That's true iff in each intersection point an even number of lines meet.
- TODO
- Solution: check if each segment endpoint appears an even number of times in the input.
 -

Problem

Given $n \leq 1000$ line segments that partition the plane in small regions. Are there two regions the same *distance* from the ocean?

Geometry solution

Find all intersections and construct the dual graph on faces: Costs $O(n^2 \log n)$ and your sanity (256 lines of C++).

Intended solution

- The difference between adjacent distances is at most 1.
- We can work modulo 2 instead.
- The answer is no iff all pairs of adjacent faces have opposite values.
- I.e.: the dual graph must be bipartite.
- That's true iff in each intersection point an even number of lines meet.
- TODO
- Solution: check if each segment endpoint appears an even number of times in the input.
 -

Find the optimal grid angle to make a tour through $n \leq 12$ points.

Find the optimal grid angle to make a tour through $n \leq 12$ points.

Subtask: assume we know the angle

- All possible $\mathcal{O}(n!)$ routes, too slow!
- DP with (current location, locations still todo)
- This runs in $\mathcal{O}(n^2 \cdot 2^n)$

Find the optimal grid angle to make a tour through $n \leq 12$ points.

Subtask: assume we know the angle

- All possible $\mathcal{O}(n!)$ routes, too slow!
- DP with (current location, locations still todo)
- This runs in $\mathcal{O}(n^2 \cdot 2^n)$

Complete solution

- Insight: in the optimal solution, there is a straight line between two consecutive locations
- Consider all n^2 angles between pairs of locations
- Total complexity $\mathcal{O}(n^4 \cdot 2^n)$

Find the optimal grid angle to make a tour through $n \leq 12$ points.

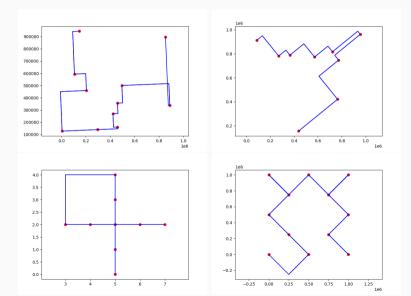
Subtask: assume we know the angle

- All possible $\mathcal{O}(n!)$ routes, too slow!
- DP with (current location, locations still todo)
- This runs in $\mathcal{O}(n^2 \cdot 2^n)$

Complete solution

- Insight: in the optimal solution, there is a straight line between two consecutive locations
- Consider all n² angles between pairs of locations
- Total complexity $\mathcal{O}(n^4 \cdot 2^n)$

Statistics: ... submissions, ... accepted, ... unknown



Problem

Find all reachable squares on an $n \times n$ grid that can be reached starting from the corner while alternating between knight moves of type (a, b) and (c, d).

Problem

Find all reachable squares on an $n \times n$ grid that can be reached starting from the corner while alternating between knight moves of type (a, b) and (c, d).

Solution

- Create two copies of the grid, one for "the last move was of type (a, b)" and one for "the last move was of type (c, d).
- Starting from the two top left corners, run BFS or DFS to find the reachable states. After each move, transfer over to the other grid.
- Count all cells that are reachable in at least one of the grids.
- Total time: $\mathcal{O}(n^2)$.

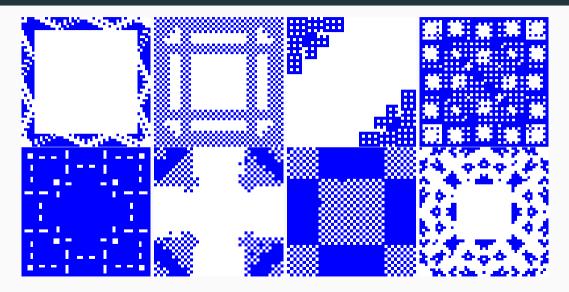
Problem

Find all reachable squares on an $n \times n$ grid that can be reached starting from the corner while alternating between knight moves of type (a, b) and (c, d).

Solution

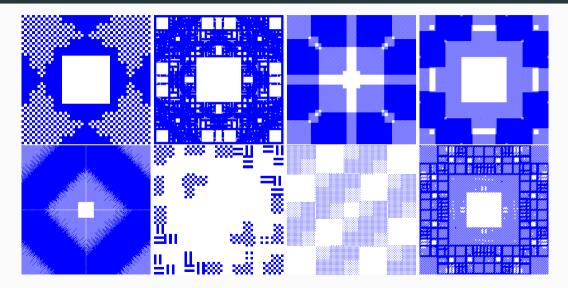
- Create two copies of the grid, one for "the last move was of type (a, b)" and one for "the last move was of type (c, d).
- Starting from the two top left corners, run BFS or DFS to find the reachable states. After each move, transfer over to the other grid.
- Count all cells that are reachable in at least one of the grids.
- Total time: $\mathcal{O}(n^2)$.

Statistics: ... submissions, ... accepted, ... unknown



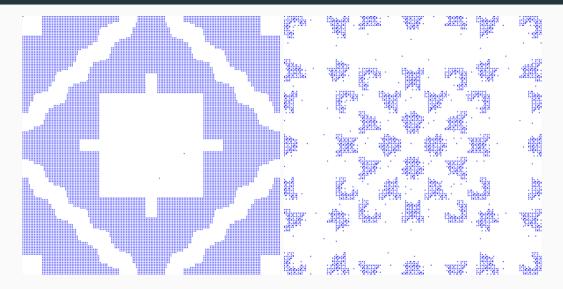
K: Klompendans

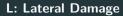
Problem Author: Maarten Sijm



K: Klompendans

Problem Author: Maarten Sijm





Problem

Play *Battleships* with a 100 \times 100 grid where you need to sink up to 10 aircraft carriers in at most 2500 shots, and your opponent is potentially cheating (adaptive).

Problem

Play *Battleships* with a 100×100 grid where you need to sink up to 10 aircraft carriers in at most 2500 shots, and your opponent is potentially cheating (adaptive).

Observation

Shooting every fifth position in a straight line prevents your opponent from placing ships in between them.

Problem

Play *Battleships* with a 100×100 grid where you need to sink up to 10 aircraft carriers in at most 2500 shots, and your opponent is potentially cheating (adaptive).

Observation

Shooting every fifth position in a straight line prevents your opponent from placing ships in between them.

Solution

- Generalizing this observation over two dimensions: shoot every position on every fifth diagonal line.
- For every hit, shoot the four positions left, right, above, and below to sink the full ship.

Problem

Play *Battleships* with a 100×100 grid where you need to sink up to 10 aircraft carriers in at most 2500 shots, and your opponent is potentially cheating (adaptive).

Observation

Shooting every fifth position in a straight line prevents your opponent from placing ships in between them.

Solution

- Generalizing this observation over two dimensions: shoot every position on every fifth diagonal line.
- For every hit, shoot the four positions left, right, above, and below to sink the full ship.

Statistics: ... submissions, ... accepted, ... unknown

Jury work

• 677 commits (including test session) (last year: 720)

Jury work

- 677 commits (including test session) (last year: 720)
- 1070 secret test cases (last year: 1424) ($89\frac{1}{6}$ per problem!)

Jury work

- 677 commits (including test session) (last year: 720)
- 1070 secret test cases (last year: 1424) ($89\frac{1}{6}$ per problem!)
- 280 jury solutions (last year: 239)

Jury work

- 677 commits (including test session) (last year: 720)
- 1070 secret test cases (last year: 1424) $(89\frac{1}{6} \text{ per problem}!)$
- 280 jury solutions (last year: 239)
- The minimum¹ number of lines the jury needed to solve all problems is

19 + 1 + 6 + 6 + 14 + 22 + 3 + 6 + 2 + 31 + 8 + 45 = 163

On average 13.6 lines per problem, down from 35.5 last year

Jury work

- 677 commits (including test session) (last year: 720)
- 1070 secret test cases (last year: 1424) $(89\frac{1}{6} \text{ per problem}!)$
- 280 jury solutions (last year: 239)
- The minimum¹ number of lines the jury needed to solve all problems is

19 + 1 + 6 + 6 + 14 + 22 + 3 + 6 + 2 + 31 + 8 + 45 = 163

On average 13.6 lines per problem, down from 35.5 last year

• Only team ORTEC beat us: they have a submission of 22 lines for Justice Served!

¹After code golfing

Jury dedication

• Most test cases for Faster Than Light were generated after midnight and/or yesterday.

Jury dedication

- Most test cases for Faster Than Light were generated after midnight and/or yesterday.
- The 80–20 rule is a thing: 80% of our time is spent on 20% of the problem statement.

Jury dedication

- Most test cases for Faster Than Light were generated after midnight and/or yesterday.
- The 80–20 rule is a thing: 80% of our time is spent on 20% of the problem statement.
- The longest discussions were about tiny style issues like "illustration" vs. "visualisation".