Problem D: Pebbles

You're given an unlimited number of pebbles to distribute across an N x N game board (N drawn from [3, 15]), where each square on the board contains some positive point value between 10 and 99, inclusive. A 6 x 6 board might look like this:

33	74	26	55	79	54
67	56	91	72	44	32
44	64	22	91	29	61
61	32	76	50	50	32
81	65	56	38	96	36
38	78	50	92	90	75

The player distributes pebbles across the board so that:

- At most one pebble resides in any given square.
- No two pebbles are placed on adjacent squares. Two squares are considered adjacent if they are horizontal, vertical, or even diagonal neighbors. There's no board wrap, so 44 and 61 of row three aren't neighbors. Neither are 33 and 75 nor 55 and 92.

The goal is to maximize the number of points claimed by your placement of pebbles.

Write a program that reads in a sequence of boards from an input file and prints to stdout the maximum number of points attainable by an optimal pebble placement for each.

Input (from file d.in)

Each board is expressed as a series of lines, where each line is a space-delimited series of numbers. A blank line marks the end of each board (including the last one)

Output (to monitor)

then your program would print the maximum number of points one can get by optimally distributing pebbles while respecting the two rules, which would be this (each output should be printed on a single line and followed with a newline):

Sample Input

71 85 92 23 64	24 50 96 61 33	95 74 23 31 32	56 94 71 30 95	54 28 10 46 89							
78 98 12 13 85 40	78 54 15 79 59 63	11 81 79 83 61 97	55 43 99 65 12 85	20 39 58 34 58 66	11 97 10 17 97 90						
33 80 49 36 77 33 75 29 62 61 45	49 21 66 53 27 85 88 34 57 35 46	78 32 35 25 33 10 43 91 36 89	79 71 19 33 42 59 57 46 85 20 53	30 89 45 88 70 47 85 75 89 38 83	16 63 90 36 46 71 28 70 18 59	34 39 31 19 35 63 34 47 80 89 48	88 52 29 23 91 75 10 63 30 64 45	54 90 84 76 17 98 59 48 19 63 87	39 14 98 23 79 96 84 16 38 88 98	26 89 58 76 43 55 45 19 14 83 21	
15 94 85 84 18 26 34 29 66 49 54 31	95 15 12 61 72 94 80 64 15 91 62	24 43 77 97 78 53 14 88 59 47 32	35 42 96 94 87 98 79 82 21 29 97	 79 88 41 49 43 78 83 15 21 37 38 42 	35 83 23 38 92 49 18 56 27 67 93	55 64 35 75 59 60 94 16 78 52 43	66 50 95 78 83 11 39 41 92 79	91 22 54 16 33 26 55 69 57 38 81 88	95 99 71 80 88 17 24 74 82 99 44	86 13 22 68 91 51 93 51 19 11 54	87 32 85 14 59 91 75 41 79 62 27 48

Sample Output