
Ellipse Eclipse 
 

An Ellipse is the set of all points where the sum of the distances to two foci is constant. You are given 

the coordinates of the two foci and the length of the Major Axis. What is that constant sum of distances. 

It turns out, it’s just the length of the Major Axis! Look at this: 

 

That constant is the sum of  𝐴𝐹1 and 𝐴𝐹2. But, since ellipses are symmetrical, 𝐴𝐹1 is the same as 𝐵𝐹2! 

Then 𝐴𝐹2 + 𝐵𝐹2 is just the Major Axis. 

OK, now that we’ve got that, most programmers will probably use some combination of binary/ternary 

search to nail down the max/mins, but this can be done closed form, without searching, using a bit of 

trigonometry and calculus. 

Consider an ellipse with its center at the origin and its Major Axis along the 𝑋-axis. I know that’s not the 

case, but we’ll start there. Such an ellipse can be represented parametrically: 

𝑥 =  𝑎 sin 𝜃 , 𝑦 = 𝑏 cos 𝜃 

Where 𝑎 is the length of the Semimajor Axis (half of the Major Axis) and 𝑏 is the length of the Semiminor 

Axis (which is the smallest radius, perpendicular to the Major Axis). The first, 𝑎, is just half of our Major 

Axis input. Now, we’ve got to find 𝑏.  

 

Th Semiminor is 𝐶𝑃. We know that 𝐹1𝑃𝐹2 is the length of the Major Axis (please excuse my poor 

drawing), so 𝐹1𝑃 is the length of the Semimajor. We know that the center 𝐶 is exactly halfway between 

𝐹1 and 𝐹2. So, 𝐶 = (
𝑥1+𝑥2

2
,

𝑦1+𝑦2

2
). (Yeah, we could just take 

𝐹1𝐹2

2
, but we’ll need 𝐶 later). 

Now, let 𝑑 = 𝐹1𝐶, and we can use the Pythagorean Theorem to get 𝑏 = √𝑎2 − 𝑑2 
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OK, that would be great if the ellipse were centered at the origin with its Major Axis along the X-axis, but 

that’s not the case. Let’s deal with the angle first. We can use atan2 to get the angle of the Major Axis: 

𝛼 = atan2(𝑦2 − 𝑦1, 𝑥2 − 𝑥1) 

OK, everything is rotated by 𝛼. To rotate, the new coordinates are: 

𝑥′ = 𝑥 cos 𝛼 − 𝑦 sin 𝛼 

𝑦′ = 𝑥 sin 𝛼 + 𝑦 cos 𝛼 

We have the parametric representation of the points of the ellipse, plug’em in! 

𝑥 = 𝑎 cos 𝜃 cos 𝛼 − 𝑏 sin 𝜃 sin 𝛼 

𝑦 = 𝑎 cos 𝜃 sin 𝛼 + 𝑏 sin 𝜃 cos 𝛼 

Now, we want to find the max/min of both 𝑥 and 𝑦. Those are inflection points – so all we have to do is 

take the derivative of each, set it to 0 and solve for 𝜃 (since that’s the only variable here). We’ll do 𝑥 and 

let you do 𝑦, remembering that the derivative of sin 𝜃 is cos 𝜃 and the derivative of cos 𝜃 is − sin 𝜃. 

𝑑

𝑑𝜃
𝑎 cos 𝜃 cos 𝛼 − 𝑏 sin 𝜃 sin 𝛼 = −𝑎 sin 𝜃 cos 𝛼 − 𝑏 cos 𝜃 sin 𝛼 = 0 

𝑎 sin 𝜃 cos 𝛼 = −𝑏 cos 𝜃 sin 𝛼 

sin 𝜃

cos 𝜃
=

−𝑏 sin 𝛼

𝑎 cos 𝛼
 

𝜃 = atan2(−𝑏 sin 𝛼 , 𝑎 cos 𝛼) 

Now, we can just plug that value of 𝜃 back into 𝑥 = 𝑎 cos 𝜃 cos 𝛼 − 𝑏 sin 𝜃 sin 𝛼 to get a max or min 

value of x. but wait! We don’t know if that’s a max or a min, and we’re still assuming that the center is at 

the origin! That’s OK. Take the absolute value, and that’s a distance from the center in the 𝑋 direction.  

So, let 𝑑𝑥 = |𝑎 cos 𝜃 cos 𝛼 − 𝑏 sin 𝜃 sin 𝛼|, compute 𝑑𝑦 similarly, and then our bounding box goes from 

(𝐶𝑥 − 𝑑𝑥, 𝐶𝑦 − 𝑑𝑦 ) to (𝐶𝑥 + 𝑑𝑥, 𝐶𝑦 + 𝑑𝑦 ). I told you we’d need that center! 

  



Here’s some Java code for you: 

a = a/2.0; 

double cx = (x1+x2)/2.0; 

double cy = (y1+y2)/2.0; 

 

double dx = cx-x1; 

double dy = cy-y1; 

double d = Math.sqrt( dx*dx + dy*dy ); 

double b = Math.sqrt( a*a - d*d ); 

 

double alpha = -Math.atan2( y2-y1, x2-x1 ); 

double cosa = Math.cos( alpha ); 

double sina = Math.sin( alpha ); 

 

double theta = Math.atan2( -b*sina, a*cosa ); 

dx = Math.abs( a*Math.cos(theta)*cosa - b*Math.sin(theta)*sina ); 

double xlo = cx - dx; 

double xhi = cx + dx; 

 

theta = Math.atan2( b*cosa, a*sina ); 

dy = Math.abs( a*Math.cos(theta)*sina + b*Math.sin(theta)*cosa ); 

double ylo = cy - dy; 

double yhi = cy + dy;  

 

DecimalFormat df = new DecimalFormat( "0.000000" );  

ps.println( df.format( xlo ) + " " + df.format( ylo )  

    + " " + df.format( xhi ) + " " + df.format( yhi ) ); 

 

 

 


