
Menger Sponge

Like all fractals, the Menger sponge exhibits self-similar structure, and so this problem is inviting a recursive
solution. Let’s consider the base case first, and then build a full solution. We will store the coordinates as
an exact rational number (using the Rational package in Python, for instance, or a custom class in C++)
in array coords[3].

Base Case: L = 1

By inspecting the L = 1 cube, we notice a pattern in the subcubes that have been deleted: all cubes that
are in at least two of the middle row, middle column, or middle slice of the 3 × 3 × 3 grid of subcubes are
deleted. We can turn this insight into a predicate that evaluates whether a point is inside the L = 1 cube:

function inCube(coords)
count = 0
for i = 0...2 do

if 1
3 < coords[i] < 2

3 then
count = count + 1

end if
end for
return count < 2

end function

Note the use of strict inequality, to correctly implement the requirement in the problem statement that
points exactly on the boundary of cubes count as being in the cube.

Recursive Case

For a cube with L > 1, we can first check if the query point is in the level-1 cube. If not, the point is
definitely not in the level L cube. Notice that each of the 20 different 1

3 ×
1
3 ×

1
3 subcubes of the level L cube

are themselves Menger sponges of level L− 1, shrunk by a factor of 3 and translated from the origin to the
appropriate spot in the 3× 3× 3 grid of subcubes.

We can undo this translation and shrinking to recursively query whether a point in the level-1 cube is in
the level-L cube:

function menger(L, coords)
if L == 0 then

return true
end if
if not inCube(coords) then

return false
end if
for i = 0...2 do

if coords[i] < 1
3 then

shift[i] = 0
else if coords[i] < 2

3 then
shift[i] = 1

3
else

shift[i] = 2
3

end if
coords[i] = 3 · (coords[i]− shift[i])

end for
return menger(L− 1, coords)

end function

1



This solution has time complexity O(L). The problem statement guarantees that L ≤ 105, and so the above
recursive solution should fit within the stack space of most programming languages. It’s also straightforward
to turn the above recursive code into an interative algorithm, if necessary.

Alternate Approach: Ternary Expansion

Notice a couple of facts about the ternary decimal [sic] representation of coords[i] which are particularly
convenient for solving this problem:

• The condition 1
3 < coords[i] < 2

3 is equivalent to 0.13 < coords[i] < 0.23;

• Shifting coords[i] and multiplying by three is the same as a left shift operation on coords[i] in ternary.

To make it easier to iterate over them, let us store the numerators and denominators in arrays num[3]
and denom[3] (so that num[0] = xnum etc.). We can then use the above insights to lazily expand coords[i]

in ternary one digit at a time to see if the query point is in the level-0, . . . , L cube:

for i = 0...L do
count = 0
for j = 0...2 do

quot = num[j] / denom[j]
rem = num[j] % denom[j]
if quot == 1 && rem ̸= 0 then ▷ The second condition enforces strict inequality

count = count + 1
end if
num[j] = 3 · rem ▷ Left-shift the ternary decimal

end for
if count ≥ 2 then

return false
end if

end for
return true

This solution also runs in time O(L), but has the advantage of not needing any kind of exact rational number
class.

2


