Problem H: Trees

Source: trees. \{c, cpp,java\}

A graph consists of a set of vertices and edges between pairs of vertices. Two vertices are connected if there is a path (subset of edges) leading from one vertex to another, and a connected component is a maximal subset of vertices that are all connected to each other. A graph consists of one or more connected components.

A tree is a connected component without cycles, but it can also be characterized in other ways. For example, a tree consisting of n vertices has exactly $n-1$ edges. Also, there is a unique path connecting any pair of vertices in a tree.

Given a graph, report the number of connected components that are also trees.

Input

The input consists of a number of cases. Each case starts with two non-negative integers \mathbf{n} and \mathbf{m}, satisfying $\mathbf{n} \leq 500$ and $\mathbf{m} \leq \mathbf{n}(\mathbf{n - 1}) / \mathbf{2}$. This is followed by m lines, each containing two integers specifying the two distinct vertices connected by an edge. No edge will be specified twice (or given again in a different order). The vertices are labelled $\mathbf{1}$ to \mathbf{n}. The end of input is indicated by a line containing $\mathbf{n}=\mathbf{m}=\mathbf{0}$.

Output

For each case, print one of the following lines depending on how many different connected components are trees ($\mathrm{T}>1$ below):

```
Case x: A forest of T trees.
Case x: There is one tree.
Case x: No trees.
```

\mathbf{x} is the case number (starting from 1).

Sample Input

$$
\begin{array}{ll}
6 & 3 \\
1 & 2 \\
2 & 3 \\
3 & 4 \\
6 & 5 \\
1 & 2 \\
2 & 3 \\
3 & 4 \\
4 & 5 \\
5 & 6 \\
6 & 6 \\
1 & 2 \\
2 & 3 \\
1 & 3 \\
4 & 5 \\
5 & 6 \\
6 & 4 \\
0 & 0
\end{array}
$$

Sample Output

Case 1: A forest of 3 trees.
Case 2: There is one tree.
Case 3: No trees.

