
Problem A
Server

Problem ID: server
Time Limit: 1 second

Picture from Wikimedia Commons

You are in charge of a server that needs to run some submitted
tasks on a first-come, first-served basis. Each day, you can
dedicate the server to run these tasks for at most T minutes.
Given the time each task takes, you want to know how many
of them will be finished today.

Consider the following example. Assume T = 180 and the
tasks take 45, 30, 55, 20, 80, and 20 minutes (in order they are
submitted). Then, only four tasks can be completed. The first
four tasks can be completed because they take 150 minutes,
but not the first five, because they take 230 minutes which
is greater than 180. Notice that although there is enough time to perform the sixth task (which takes 20
minutes) after completing the fourth task, you cannot do that because the fifth task is not done yet.

Input

The input consists of a single test case. The first line contains two integers n and T where 1 ≤ n ≤ 50 is the
number of tasks and 1 ≤ T ≤ 500. The next line contains n positive integers no more than 100 indicating
how long each task takes in order they are submitted.

Output

Display the number of tasks that can be completed in T minutes on a first-come, first-served basis.

Sample Input Sample Output

6 180
45 30 55 20 80 20

4

Sample Input Sample Output

10 60
20 7 10 8 10 27 2 3 10 5

5

Problem A: Server 1



This page is intentionally left blank.



Problem B
Eligibility

Problem ID: eligibility
Time Limit: 2 seconds

Every year, students across the world participate
in the ACM ICPC1. In order to participate in this
contest, a student must be eligible to compete. In
this problem, you will be given information about
students and you will write a program to determine
their eligibility to participate in the ICPC.

We will start by assuming that each student meets
the “Basic Requirements” as specified in the ICPC
rules—the student is willing to compete at the
World Finals, is a registered student with at least
half-time load, competes for only one institution in
a contest year, and has not competed in two world
finals or five regional contests.

The rules to decide if a student is eligible to com-
pete in the contest year 2014–2015 are as follows:

1. if the student first began post-secondary
studies in 2010 or later, the student is eli-
gible;

2. if the student is born in 1991 or later, the
student is eligible;

3. if none of the above applies, and the student
has completed more than an equivalent of 8
semesters of full-time study, the student is
ineligible;

4. if none of the above applies, the coach may
petition for an extension of eligibility by providing the student’s academic and work history.

For “equivalent of 8 semesters of full-time study,” we consider each semester of full-time study to be equiva-
lent to a student completing 5 courses. Thus, a student who has completed 41 courses or more is considered
to have more than 8 semesters of full-time study.

1This may be the only problem statement in which these acronyms expand to Association for Computing Machinery Interna-
tional Collegiate Programming Contest.

Problem B: Eligibility 3



Input

The input consists of a number of cases. The first line contains a positive integer, indicating the number of
cases to follow. Each of the cases is specified in one line in the following format

name YYYY/MM/DD YYYY/MM/DD courses

where name is the name of the student (up to 30 alphabetic characters), the first date given is the date the
student first began post-secondary studies, and the second date given is the student’s date of birth. All dates
are given in the format above with 4-digit year and 2-digit month and day. courses is a non-negative
integer indicating the number of courses that the student has completed.

There are at most 1 000 cases.

Output

For each line of output, print the student’s name, followed by a space, followed by one of the strings
eligible, ineligible, and coach petitions as appropriate.

Sample Input

3
EligibleContestant 2013/09/01 1995/03/12 10
IneligibleContestant 2009/09/01 1990/12/12 50
PetitionContestant 2009/09/01 1990/12/12 35

Sample Output

EligibleContestant eligible
IneligibleContestant ineligible
PetitionContestant coach petitions

Problem B: Eligibility 4



Problem C
Plane Ticket Pricing

Problem ID: seats
Time Limit: 2 seconds

Picture from Wikimedia Commons

Plane ticket prices fluctuate wildly from one week to
the next, and their unpredictability is a major source of
frustration for travellers. Some travellers regret buying
tickets too early when the prices drop right after they
purchase the tickets, and some travellers regret buying
tickets too late when prices rise right before they are
about to make the purchase. At the end, no one is happy,
except the airlines, of course.

Surely there is some reason to this madness. It turns out that airlines price their tickets dynamically, based
on how many seats are still available and how close the flight is. For example, if there are very few seats
left on a flight then the tickets may be expensive until the last few weeks before the flight, at which point
the prices may decrease to fill the empty seats. Ultimately, the airlines wish to maximize revenue from each
flight.

You have been hired by the International Contrived Pricing Corporation (ICPC) to set ticket prices each
week for airlines. The airlines have collected and analyzed historical data, and have good estimates on the
number of seats that will be sold at a particular ticket price with a particular number of weeks before the
flight. Given the number of seats left on a flight as well as the number of weeks left before the flight, your
job is to set the ticket price for the current week, in order to maximize the total revenue obtained from ticket
sales from the current week to the time of the flight. You may assume that the number of tickets sold is
exactly the same as the estimates, unless there are not enough remaining seats. In that case, all remaining
seats will be sold. You may also assume that the optimal ticket prices will be chosen for the remaining
weeks before the flight.

Note that higher prices do not necessarily mean fewer tickets will be sold. In fact, higher prices can some-
times increase sales as travellers may be worried that the prices will rise even higher later.

Input

The input consists of one case. The first line contains two integers, N and W , the number of seats left and
the number of weeks left before the flight (0 < N ≤ 300, 0 ≤ W ≤ 52). The next W + 1 lines give the
estimates for W weeks, W − 1 weeks, . . . , and down to 0 weeks (i.e. last week) before the flight. Each of
these lines starts with an integer K (0 < K ≤ 100), the number of different prices to consider that week.
This is followed by K integers 0 < p1 < · · · < pK < 1000 giving the prices in dollars. Finally, this is
followed by K additional integers s1, . . . , sK (0 ≤ si ≤ N ) indicating the number of tickets that will be
sold for the corresponding prices.

Problem C: Plane Ticket Pricing 5



Output

On the first line, print the maximum total revenue the airline can obtain from ticket sales from the current
week to the time of the flight. On the second line, print the ticket price to set for the current week (W weeks
before the flight) to achieve this maximum.

If there are multiple sets of ticket prices achieving this maximum, choose the smallest ticket price for week
W .

Sample Input Sample Output

50 2
1 437 47
3 357 803 830 13 45 46
1 611 14

23029
437

Sample Input Sample Output

100 3
4 195 223 439 852 92 63 15 1
2 811 893 76 27
1 638 3
1 940 38

83202
852

Problem C: Plane Ticket Pricing 6



Problem D
Facility Locations
Problem ID: facility

Time Limit: 1 second

Picture from Wikimedia Commons

The HDWBP Inc. has n clients and needs to service
these clients by opening k facilities. Each opened fa-
cility can serve any number of clients and each client
must be served by an open facility. There are m po-
tential locations for these k facilities. The cost of serv-
ing client j at potential location i is a non-negative in-
teger cij . These costs satisfy a locality property: for
two clients j and j′ and two facilities i and i′, we have
cij ≤ ci′j + ci′j′ + cij′ . Given the costs, the CEO of HDWBP Inc. ultimately wants to know the cheapest
way to open k facilities and assign clients to these open facilities. For now, he needs your help to determine
if it is possible to do this task without any cost (i.e. with cost zero).

Input

The input consists of a single test case. The first line contains three integers m, n, k where 1 ≤ m ≤ 100,
1 ≤ n ≤ 100 and 1 ≤ k ≤ m. Each of the next m lines contains n non-negative integers where the jth
integer in the ith line is cij ≤ 10 000.

Output

Display yes if it is possible to do the task with cost zero; otherwise, display no.

Sample Input Sample Output

3 2 2
0 2
1 1
2 0

yes

Sample Input Sample Output

3 3 2
0 2 2
1 1 1
2 2 0

no

Problem D: Facility Locations 7



This page is intentionally left blank.



Problem E
Repeated Substrings

Problem ID: substrings
Time Limit: 5 seconds

Picture from Wikimedia Commons

String analysis often arises in applications from biology and chem-
istry, such as the study of DNA and protein molecules. One inter-
esting problem is to find how many substrings are repeated (at least
twice) in a long string.

In this problem, you will write a program to find the total num-
ber of repeated substrings in a string of at most 100 000 alpha-
betic characters. Any unique substring that occurs more than once
is counted. As an example, if the string is “aabaab”, there are 5
repeated substrings: “a”, “aa”, “aab”, “ab”, “b”. If the string is
“aaaaa”, the repeated substrings are “a”, “aa”, “aaa”, “aaaa”. Note that repeated occurrences of a substring
may overlap (e.g. “aaaa” in the second case).

Input

The input consists of at most 10 cases. The first line contains a positive integer, specifying the number of
cases to follow. Each of the following line contains a nonempty string of up to 100 000 alphabetic characters.

Output

For each line of input, output one line containing the number of unique substrings that are repeated. You
may assume that the correct answer fits in a signed 32-bit integer.

Sample Input Sample Output

3
aabaab
aaaaa
AaAaA

5
4
5

Problem E: Repeated Substrings 9



This page is intentionally left blank.



Problem F
Landline Telephone Network

Problem ID: landline
Time Limit: 2 seconds

The mayor of RMRCity wants to create a secure landline telephone net-
work for emergency use in case of serious disasters when the city is cut
off from the outside world. Some pairs of buildings in the city can be
directly connected with a wire telephone line and the municipality en-
gineers have prepared an estimate of the cost of connecting any such
pair.

The mayor needs your help to find the cheapest network that connects
all buildings in the city and satisfies a particular security measure that
will be explained shortly. A call from a building A to another building
B may be routed through any simple path in the network (i.e., a path
that does not have any repeated building). There are also some insecure
buildings that one or more persons with serious criminal records live
in. The mayor wants only communications intended for these insecure
buildings to reach them. In other words, no communication from any building A to any building B should
pass through any insecure building C in the network (where C is different from A and B).

Input

The input consists of a single test case. The first line contains three integers n, m, p where 1 ≤ n ≤ 1 000
is the number of buildings, 0 ≤ m ≤ 100 000 is the number of possible direct connections between a pair
of buildings, and 0 ≤ p ≤ n is the number of insecure buildings. The buildings are numbered from 1 to n.
The second line contains p distinct integers between 1 and n (inclusive), which are the numbers of insecure
buildings. Each of the next m lines contains three integers xi, yi, and `i describing one potential direct line,
where xi and yi (1 ≤ xi, yi ≤ n) are the distinct buildings the line connects, and `i (1 ≤ `i ≤ 10 000)
is the estimate of the cost of connecting these buildings. There is at most one direct link between any two
buildings in these m lines.

Output

Display the cost of the cheapest network satisfying the security measure if it is possible. Otherwise, display
impossible.

Problem F: Landline Telephone Network 11



Sample Input Sample Output

4 6 1
1
1 2 1
1 3 1
1 4 1
2 3 2
2 4 4
3 4 3

6

Sample Input Sample Output

4 3 2
1 2
1 2 1
2 3 7
3 4 5

impossible

Problem F: Landline Telephone Network 12



Problem G
Aquarium Tank
Problem ID: tank

Time Limit: 1 second

Picture from Wikimedia Commons

You just bought an “artistic” aquarium tank that has an
interesting shape, and you poured L litres of water into
the tank. How high is the water in the tank?

When you look at this tank from one side, it has the
shape of a convex polygon. This polygon has exactly
two vertices on the table (y-coordinates are 0), and all
other vertices have positive y-coordinates. There are
also exactly two vertices with maximum y-coordinates,
and water is poured into the opening between these two
vertices. This aquarium tank has a depth of D centime-
tres. The tank is glued to the table, so no matter what
shape it has, it keeps its position and does not tip over.

All coordinates and lengths in this problem are given in centimetres. It should be noted that each cubic
metre is equivalent to 1 000 litres.

An illustration showing the configuration of the tank of the first sample input is given below:

Input

The input consists of a single test case. The first line contains an integer N (4 ≤ N ≤ 100) giving the
number of vertices in the polygon. The next line contains two integers D and L, where 1 ≤ D ≤ 1 000 is
the depth of the aquarium tank and 0 ≤ L ≤ 2 000 is the number of litres of water to pour into the tank. The
next N lines each contains two integers, giving the (x, y) coordinates of the vertices of the convex polygon
in counterclockwise order. The absolute values of x and y are at most 1 000. You may assume that the tank
has a positive capacity, and you never pour more water than the tank can hold.

Output

Print the height of the water (in centimetres) in the aquarium tank on a line to 2 decimal places.

Problem G: Aquarium Tank 13



Sample Input Sample Output

4
30 50
20 0
100 0
100 40
20 40

20.83

Sample Input Sample Output

9
30 70
110 70
100 80
80 80
-10 60
-40 30
-40 25
20 0
100 0
120 10

19.74

Problem G: Aquarium Tank 14



Problem H
Restaurant Ratings

Problem ID: ratings
Time Limit: 1 second

A famous travel web site has designed a new
restaurant rating system. Each restaurant is rated
by one of n (1 ≤ n ≤ 15) critics, each giving
the restaurant a nonnegative numeric rating (higher
score means better). Some of these critics are more
influential than others.

The restaurants in each city are ranked as follows.
First, sum up the ratings given by all the critics for
a restaurant. A restaurant with a higher total sum
is always better than one with a lower total sum. For restaurants with the same total sum, we rank them
based on the ratings given by critic 1. If there is a tie, then we break ties by the ratings by critic 2, etc.

A restaurant owner received the ratings for his restaurant, and is curious about how it ranks in the city. He
does not know the ratings of all the other restaurants in the city, so he would estimate this by computing the
maximum number of different ratings that is no better than the one received by the restaurant. You are asked
to write a program to answer his question.

Input

The input consists of a number of cases. Each case is specified on one line. On each line, the first integer is
n, followed by n integers containing the ratings given by the n critics (in order). You may assume that the
total sum of ratings for each restaurant is at most 30. The input is terminated by a line containing n = 0.

Output

For each input, print the number of different ratings that is no better than the given rating. You may assume
that the output fits in a 64-bit signed integer.

Sample Input Sample Output

1 3
2 4 3
5 4 3 2 1 4
0

4
33
10810

Problem H: Restaurant Ratings 15



This page is intentionally left blank.



Problem I
Locked Treasure
Problem ID: locks

Time Limit: 1 second

Picture from Wikimedia Commons

A group of n (1 ≤ n ≤ 30) bandits hid their stolen treasure in a room. The
treasure needs to be locked away until there is a need to retrieve it. Since
the bandits do not trust each other, they wanted to ensure that at least m
(1 ≤ m ≤ n) of the bandits must agree in order to retrieve the treasure.

They have decided to place multiple locks on the door such that the door can
be opened if and only if all the locks are opened. Each lock may have up to
n keys, distributed to a subset of the bandits. A group of bandits can open a
particular lock if and only if someone in the group has a key to that lock.

Given n and m, how many locks are needed such that if the keys to the locks
are distributed to the bandits properly, then every group of bandits of size at least m can open all the locks,
and no smaller group of bandits can open all the locks?

For example, if n = 3 and m = 2, only 3 locks are needed—keys to lock 1 can be given to bandits 1 and 2,
keys to lock 2 can be given to bandits 1 and 3, and keys to lock 3 can be given to bandits 2 and 3. No single
bandit can open all the locks, but any group of 2 bandits can open all the locks. You should also convince
yourself that it is not possible to satisfy the requirements with only 2 locks.

Input

The first line of input contains a positive integer indicating the number of cases to follow. Each case is
specified by the two integers n and m on one line.

Output

For each line of input, print on one line the minimum number of locks needed.

Sample Input Sample Output

4
3 2
5 1
10 7
5 3

3
1
210
10

Problem I: Locked Treasure 17



This page is intentionally left blank.



Problem J
Yet Satisfiability Again!

Problem ID: sat
Time Limit: 5 seconds

Picture from Wikimedia Commons

Alice recently started to work for a hardware design company and
as a part of her job, she needs to identify defects in fabricated in-
tegrated circuits. An approach for identifying these defects boils
down to solving a satisfiability instance. She needs your help to
write a program to do this task.

Input

The first line of input contains a single integer, not more than 5,
indicating the number of test cases to follow. The first line of each
test case contains two integers n and m where 1 ≤ n ≤ 20 indicates the number of variables and 1 ≤ m ≤
100 indicates the number of clauses. Then, m lines follow corresponding to each clause. Each clause is a
disjunction of literals in the form Xi or ∼Xi for some 1 ≤ i ≤ n, where ∼Xi indicates the negation of the
literal Xi. The “or” operator is denoted by a ‘v’ character and is seperated from literals with a single space.

Output

For each test case, display satisfiable on a single line if there is a satisfiable assignment; otherwise
display unsatisfiable.

Sample Input Sample Output

2
3 3
X1 v X2
~X1
~X2 v X3
3 5
X1 v X2 v X3
X1 v ~X2
X2 v ~X3
X3 v ~X1
~X1 v ~X2 v ~X3

satisfiable
unsatisfiable

Problem J: Yet Satisfiability Again! 19



This page is intentionally left blank.



Problem K
Continued Fraction

Problem ID: fraction
Time Limit: 1 second

The (simple) continued fraction representation of a real number r is an
expression obtained by an iterative process of representing r as the sum
of its integer part and the reciprocal of another number, then writing this
other number as the sum of its integer part and another reciprocal, and
so on. In other words, a continued fraction representation of r is of the
form

r = a0 +
1

a1 +
1

a2 +
1

a3 + . . .

where a0, a1, a2, . . . are integers and a1, a2, · · · > 0. We call the ai-
values partial quotients. For example, in the continued fraction representation of 5.4, the partial quotients
are a0 = 5, a1 = 2, a2 = 2. This representation of a real number has several applications in theory and
practice. If r is a rational number, the partial quotients are eventually all zero, so we only need to consider
a finite number of partial quotients.

Given two rational numbers in continued fraction representation, your task is to perform the four elementary
arithmetic operations on these numbers and display the results in continued fraction representation.

Input

The input consists of a single test case. The test case consists of three lines. The first line contains two
integers n1 and n2, where 1 ≤ ni ≤ 9 is the number of partial quotients of rational number ri for 1 ≤ i ≤ 2.
The second line contains the partial quotients of r1 and the third line contains the partial quotients of r2.
The absolute values of the quotients are not more than 10 and you may assume that r1 > r2 > 0.

Output

Display the partial quotients of the continued fraction representations of r1 +r2, r1−r2, r1×r2, and r1/r2,
in order, each in a line. Consecutive partial quotients on each line are separated by a single space. Do not
print any trailing zero partial quotients.

Sample Input Sample Output

4 3
5 1 1 2
5 2 2

11
0 5
30 4 6
1 27

Problem K: Continued Fraction 21



This page is intentionally left blank.


