2019 Rocky Mountain Regional
Programming Contest

Solution Sketches

RMRC 2019 Solution Sketches



@ Darko Aleksic

@ Darcy Best

@ Howard Cheng

@ Zachary Friggstad

@ Brandon Fuller

RMRC 2019 Solution Sketches



A - Piece of Cake! (71/71)

@ The cake is cut into 4 pieces, pick the one with the
maximum length for each side:

4 - max(a, n — a) - max(b, n — b)

RMRC 2019 Solution Sketches



K - Lost Lineup (67/68)

@ n=1,answeris 1
@ Otherwise, permutation of numbers between 0 and n — 2

@ Sort or find position one by one (small n), good enough
even if it is O(n?).

RMRC 2019 Solution Sketches



D - Integer Division (43/66)

@ Too slow to count each pair one at a time

@ Equivalence classes: count how many elements have the
same quotient

@ If there are k elements with the same quotient, then there
are k(k — 1)/2 pairs with the quotient

@ You can use a map to count for each quotient, or sort the
quotients

@ Watch out for overflow!

RMRC 2019 Solution Sketches



| - Tired Terry (40/60)

@ Sliding window of size p

@ Update the count of “sleep” as we slide the window: look at
the letter entering the window and leaving the window

@ Easier if input string is duplicated to avoid wraparound

@ Can be done in linear time.

RMRC 2019 Solution Sketches



B - Fantasy Draft (28/47)

@ Just simulate one draft pick at a time. ..

@ To do this under the time limit, you cannot afford to search
the preference list every time

@ Use a queue for each team: its preference with the global
ranking appended

@ Keep track of whether a player has been selected or not.

RMRC 2019 Solution Sketches



H - The Biggest Triangle (10/19)

@ Enumerate all O(n®) different triples of lines.
For each triple:
e Make sure no two are parallel (or coincide).
e Compute the intersections of any two from the triple.
o If they are distinct, add the distances between any two of
them to get this triangle’s perimeter.

@ Mostly about getting the geometric details right.

RMRC 2019 Solution Sketches



C - Folding a Cube (9/28)

@ The specification guarantees the six squares form a “tree”.

@ So there is a unique way to try folding them into a cube.

@ For any two distinct # squares i, j of the input, consider

putting a “test” cube on square i and rolling it along #
squares to square j.

e If this would put the side initially on i/ face down on j, it is
impossible to fold the cube.

e If this never happens for any i, j pair of # squares, the
folding is possible.

@ So you have to track a side of the cube as it rolls around.

RMRC 2019 Solution Sketches



G - Typo (5/39)

@ Just doing naively it is too slow, the words can be too big.
Solution: Hashing with polynomials.

@ Think of each word w := ¢y¢y ... ¢q—1 @s a polynomial
w(x) :=>_; ¢ - x' where ¢; = ASClII value.

@ Pick a random integer x and compute each polynomial
w(X) mod p for a large prime p. This is our hash of w.

@ Store partial sums w;(X) := 3", ¢; - X' mod p and also the
inverse of X mod p.

@ Using arithmetic tricks, we can then compute the hash of w
if we remove any single character ¢; in O(1) time.

RMRC 2019 Solution Sketches



G - Typo (5/39)

@ Algorithm
e Store the hash of each dictionary word w in an set.
e Try removing each c; from each word w in the dictionary, if
its hash was one stored in the last step, w is probably a
typo.

@ Since you have to output each typo anyway, you can also
spend the time verifying it is indeed a typo (i.e. do the
string checking if you see a hit).

@ Can prove the expected running time is O(input size).

@ Why does this work? Distinct polynomials of degree < d
will agree in at most d points even if we work mod p. So
the probability of distinct strings of length < d hashing to
the same value is < d/p.

RMRC 2019 Solution Sketches



E - Hogwarts (4/6)

@ You can do a simulatenous traversal on the two graphs,
starting at the entrace at both graphs

@ Follow the corresponding edges and keep track of the pair
of rooms you are in for each graph

@ If we ever arrive at a node such that the first component is
the dormitory and the second component is not, the
answer is no.

@ Any graph traversal (e.g. breadth-first search) algorithm
would work.

@ Another view: both graphs are finite automaton. Is the
language of the first automaton a subset of the other one?

RMRC 2019 Solution Sketches



F - Molecules (2/4)

@ System of 2n equations with 2n unknowns: the x and y
values of the points that are not fixed equal the average of
their neighbours.

@ Can prove there is a unique solution, given the assumption
the molecule is connected and has at least one fixed point.

@ Alternatively, just simulate.
Place the unfixed points somewhere. Repeatedly, for each
point compute the average of its neighbours and move
halfway there. Converges close enough after a few
thousand iterations (can prove this too).

RMRC 2019 Solution Sketches



J - Watch Later (1/23)

@ Need to determine the order of types of video to watch.

@ Once the order is fixed, the number of clicks to watch a
particular type is the number of “chunks” of that type

@ Use dynamic programming O(2") states: what is the
subset of types watched so far

@ To be fast enough, need to be efficient in determining the
number of chunks (can be done in linear time).

RMRC 2019 Solution Sketches



