Southeastern European Regional Programming Contest
Bucharest, Romania
October 17, 2009

Problem K
The Bad Number

Input File: K.IN
Output File: standard output
Program Source File: K.C, K.CPP, K.JAVA
John and Brus believe that number \mathbf{N} is a very bad number. Thus they try to avoid it every time and everywhere.

Now the guys would like to represent number \mathbf{M} as a sum of positive numbers, each of which not exceeding K. But don't forget about the bad number \mathbf{N} ! Each summand must not be divisible by \mathbf{N}, moreover the number of summands also must not be divisible by \mathbf{N}.

Your task is to find the minimal possible number of summands in such representation of \mathbf{M}.
For example, if $\mathbf{N}=\mathbf{3}, \mathbf{M}=\mathbf{1 1}, \mathbf{K}=\mathbf{6}$ then we can represent \mathbf{M} as $\mathbf{5 + 6}$, but as far as $\mathbf{6}$ is divisible by $\mathbf{3}$ we must have at least $\mathbf{3}$ summands. But as far as $\mathbf{N}=3$ we can't have $\mathbf{3}$ summands and thus the answer is $\mathbf{4}$. One of the possible ways to represent \mathbf{M} is $\mathbf{1 1 = 4 + 4 + 2 + 1}$.

Input: standard input

The first line contains single integer \mathbf{T} - the number of test cases. Each test case consists of a single line containing three integers \mathbf{N}, \mathbf{M} and \mathbf{K} separated by single spaces.

Output: standard output
For each test case print a single line containing the minimal possible number of summands according to the requirements described above. If it is impossible to do this output "-1" (quotes for clarity) instead.

Constraints:

$1 \leq \mathrm{T} \leq 74$,
$1 \leq N, M, K \leq 1000000000\left(10^{9}\right)$.

Sample:

	Input	Output	
2			4
3	11	6	-1
2	12	47	

